On the Casson Invariant Conjecture of Neumann–Wahl
Authors:
András Némethi and Tomohiro Okuma
Journal:
J. Algebraic Geom. 18 (2009), 135-149
DOI:
https://doi.org/10.1090/S1056-3911-08-00493-1
Published electronically:
March 4, 2008
MathSciNet review:
2448281
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this article we prove the Casson Invariant Conjecture of Neumann–Wahl for splice type surface singularities. Namely, for such an isolated complete intersection we show that the Casson invariant of the link is one-eighth the signature of the Milnor fiber, provided that the link is an integral homology sphere.
References
- Norbert A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 50 (1975), 233–248 (French). MR 371889, DOI https://doi.org/10.1007/BF02565748
- S. Boyer and A. Nicas, Varieties of group representations and Casson’s invariant for rational homology $3$-spheres, Trans. Amer. Math. Soc. 322 (1990), no. 2, 507–522. MR 972701, DOI https://doi.org/10.1090/S0002-9947-1990-0972701-6
- Olivier Collin, Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math. 37 (2000), no. 1, 57–71. MR 1750270
- Olivier Collin and Nikolai Saveliev, A geometric proof of the Fintushel-Stern formula, Adv. Math. 147 (1999), no. 2, 304–314. MR 1734525, DOI https://doi.org/10.1006/aima.1999.1842
- Olivier Collin and Nikolai Saveliev, Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001), 143–169. MR 1876288, DOI https://doi.org/10.1515/crll.2001.090
- Alan H. Durfee, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978), no. 1, 85–98. MR 466620, DOI https://doi.org/10.1007/BF01420624
- David Eisenbud and Walter Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. MR 817982
- Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109–137. MR 1051101, DOI https://doi.org/10.1112/plms/s3-61.1.109
- Shinji Fukuhara, Yukio Matsumoto, and Koichi Sakamoto, Casson’s invariant of Seifert homology $3$-spheres, Math. Ann. 287 (1990), no. 2, 275–285. MR 1054569, DOI https://doi.org/10.1007/BF01446893
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI https://doi.org/10.2969/jmsj/03020179
- Henry B. Laufer, On $\mu $ for surface singularities, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R. I., 1977, pp. 45–49. MR 0450287
- András Némethi and Liviu I. Nicolaescu, Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269–328. MR 1914570, DOI https://doi.org/10.2140/gt.2002.6.269
- Walter D. Neumann, Abelian covers of quasihomogeneous surface singularities, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 233–243. MR 713252
- Walter D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299–344. MR 632532, DOI https://doi.org/10.1090/S0002-9947-1981-0632532-8
- Walter D. Neumann, Graph 3-manifolds, splice diagrams, singularities, Singularity theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 787–817. MR 2342940, DOI https://doi.org/10.1142/9789812707499_0034
- Walter Neumann and Jonathan Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), no. 1, 58–78. MR 1036128, DOI https://doi.org/10.1007/BF02566593
- Walter D. Neumann and Jonathan Wahl, Universal abelian covers of surface singularities, Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, pp. 181–190. MR 1900786
- Walter D. Neumann and Jonathan Wahl, Universal abelian covers of quotient-cusps, Math. Ann. 326 (2003), no. 1, 75–93. MR 1981612, DOI https://doi.org/10.1007/s00208-002-0405-6
- Walter D. Neumann and Jonathan Wahl, Complex surface singularities with integral homology sphere links, Geom. Topol. 9 (2005), 757–811. MR 2140992, DOI https://doi.org/10.2140/gt.2005.9.757
- Walter D. Neumann and Jonathan Wahl, Complete intersection singularities of splice type as universal abelian covers, Geom. Topol. 9 (2005), 699–755. MR 2140991, DOI https://doi.org/10.2140/gt.2005.9.699
- Okuma, T: The geometric genus of splice-quotient singularities, arXiv:math.AG/ 0610464, to appear in Trans. AMS.
- Tomohiro Okuma, Universal abelian covers of certain surface singularities, Math. Ann. 334 (2006), no. 4, 753–773. MR 2209255, DOI https://doi.org/10.1007/s00208-005-0693-8
- Stevens, J.: Universal abelian covers of superisolated singularities, arXiv:math.AG/ 0601669.
- Masataka Tomari, A $p_g$-formula and elliptic singularities, Publ. Res. Inst. Math. Sci. 21 (1985), no. 2, 297–354. MR 785140, DOI https://doi.org/10.2977/prims/1195179626
- Masataka Tomari and Keiichi Watanabe, Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989), no. 5, 681–740. MR 1031224, DOI https://doi.org/10.2977/prims/1195172704
References
- A’Campo, N.: La fonction zêta d’une monodromie, Comment. Math. Helv., 50, 233-248, 1975. MR 0371889 (51:8106)
- Boyer, S. and Nicas, A.: Varieties of group representations and Casson’s invariant for rational homology 3–spheres, Trans. AMS 322 (2), 507-522, 1990. MR 972701 (92a:57020)
- Collin, O.: Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math., 37 (2000), 57-71. MR 1750270 (2001d:57014)
- Collin, O. and Saveliev, N.: A geometric proof of the Fintushel-Stern formula, Adv. in Math., 147 (1999), 304-314. MR 1734525 (2001b:57023)
- Collin, O. and Saveliev, N.: Equivariant Casson invariants via gauge theory, J. reine Angew. Math., 541 (2001), 143-169. MR 1876288 (2002k:57077)
- Durfee, A.: The Signature of Smoothings of Complex Surface Singularities, Math. Ann., 232, 85-98, 1978. MR 0466620 (57:6497)
- Eisenbud, D. and Neumann, W.: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Studies 110, Princeton University Press, 1985. MR 817982 (87g:57007)
- Fintushel, R. and Stern, R.J.: Instanton homology of Seifert fibered homology 3–spheres, Proc. London Math. Soc. 61 (3), 109-137, 1991. MR 1051101 (91k:57029)
- Fukuhara, S.; Matsumoto, Y. and Sakamoto, K.: Casson’s invariant of Seifert homology $3$-spheres Math. Ann., 287 (1990), no. 2, 275–285. MR 1054569 (91e:57027)
- Goto, S. and Watanabe, K.-i.: On graded rings, J. Math. Soc. Japan 30 (1978), no. 2, 179-213. MR 494707 (81m:13021)
- Laufer, H.B.: On $\mu$ for surface singularities, Proceedings of Symposia in Pure Math., 30, 45-49, 1977. MR 0450287 (56:8583)
- Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities, Geometry and Topology, 6 (2002), 269-328. MR 1914570 (2003i:14048)
- Neumann, W.: Abelian covers of quasihomogeneous surface singularities, Proc. of Symposia in Pure Mathematics, 40, Part 2, 233-244, 1983. MR 713252 (85g:32018)
- Neumann, W.D.: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Transactions of the AMS, 268 (1981), no. 2, 299-344. MR 632532 (84a:32015)
- Neumann, W.: Graph 3-manifolds, splice diagrams, singularities. Singularity theory, 787–817, World Sci. Publ., Hackensack, NJ, 2007. MR 2342940
- Neumann, W. and Wahl, J.: Casson invariant of links of singularities, Comment. Math. Helv., 65 (1991), 58-78. MR 1036128 (91c:57022)
- Neumann, W. and Wahl, J.: Universal abelian covers of surface singularities, Trends in singularities, 181-190, Trends Math. Birkhäuser, Basel, 2002. MR 1900786 (2003c:32028)
- Neumann, W. and Wahl, J.: Universal abelian covers of quotient-cusps, Math. Ann., 326 (2003), no. 1, 75-93. MR 1981612 (2004d:32039)
- Neumann, W. and Wahl, J.: Complex surface singularities with integral homology sphere links, Geometry and Topology, 9 (2005), 757-811. MR 2140992 (2006b:32042)
- Neumann, W. and Wahl, J.: Complete intersection singularities of splice type as universal abelian covers, Geometry and Topology, 9 (2005), 699-755. MR 2140991 (2006i:32037)
- Okuma, T: The geometric genus of splice-quotient singularities, arXiv:math.AG/ 0610464, to appear in Trans. AMS.
- Okuma, T: Universal abelian covers of certain surface singularities, Math. Ann., 334 (2006), 753-773. MR 2209255 (2007f:32036)
- Stevens, J.: Universal abelian covers of superisolated singularities, arXiv:math.AG/ 0601669.
- Tomari, M.: A $p_g$–formula and elliptic singularities, Publ. R. I. M. S., Kyoto University, 21, 297-354, 1985. MR 785140 (86h:14029)
- Tomari, Masataka and Watanabe, Kei-ichi: Filtered rings, Filtered Blowing–Ups, Normal Two–Dimensional Singularities with “Star–Shaped” Resolution, Publ. R. I. M. S., Kyoto University, 25, 681-740, 1989. MR 1031224 (91a:14010)
Additional Information
András Némethi
Affiliation:
Rényi Institute of Mathematics, Budapest, Hungary
Email:
nemethi@renyi.hu
Tomohiro Okuma
Affiliation:
Department of Education, Yamagata University, Yamagata 990-8560, Japan
MR Author ID:
619386
Email:
okuma@e.yamagata-u.ac.jp
Received by editor(s):
October 31, 2006
Received by editor(s) in revised form:
August 17, 2007
Published electronically:
March 4, 2008
Additional Notes:
The first author was partially supported by NSF grant DMS-0605323, a Marie Curie grant and OTKA grants. The second author was partially supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan