The moduli space of cubic fourfolds
Author:
Radu Laza
Journal:
J. Algebraic Geom. 18 (2009), 511-545
DOI:
https://doi.org/10.1090/S1056-3911-08-00506-7
Published electronically:
June 5, 2008
MathSciNet review:
2496456
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We describe the GIT compactification of the moduli space of cubic fourfolds (cubic hypersurfaces in the five dimensional projective space), with a special emphasis on the role played by singularities. Our main result is that a cubic fourfold with only isolated simple (A-D-E) singularities is GIT stable. Conversely, with some minor exceptions, the stability for cubic fourfolds is characterized by this condition.
References
- Daniel Allcock, The moduli space of cubic threefolds, J. Algebraic Geom. 12 (2003), no. 2, 201–223. MR 1949641, DOI https://doi.org/10.1090/S1056-3911-02-00313-2
- ---, Personal communication (2007).
- Daniel Allcock, James A. Carlson, and Domingo Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), no. 4, 659–724. MR 1910264, DOI https://doi.org/10.1090/S1056-3911-02-00314-4
- ---, The Moduli Space of Cubic Threefolds as a Ball Quotient, arXiv:math/ 0608287v1 [math.AG] (2006), 77 pp.
- Paolo Aluffi, Singular schemes of hypersurfaces, Duke Math. J. 80 (1995), no. 2, 325–351. MR 1369396, DOI https://doi.org/10.1215/S0012-7094-95-08014-4
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
- V. I. Arnol$’$d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser, Boston, MA, 1985.
- D. Avritzer and R. Miranda, Stability of pencils of quadrics in ${\bf P}^4$, Bol. Soc. Mat. Mexicana (3) 5 (1999), no. 2, 281–300. MR 1738422
- Arnaud Beauville and Ron Donagi, La variété des droites d’une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706 (French, with English summary). MR 818549
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523
- Mark Gross and Sorin Popescu, Equations of $(1,d)$-polarized abelian surfaces, Math. Ann. 310 (1998), no. 2, 333–377. MR 1602020, DOI https://doi.org/10.1007/s002080050151
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564
- Brendan Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), no. 1, 1–23. MR 1738215, DOI https://doi.org/10.1023/A%3A1001706324425
- Frances Kirwan, Moduli spaces of degree $d$ hypersurfaces in ${\bf P}_n$, Duke Math. J. 58 (1989), no. 1, 39–78. MR 1016413, DOI https://doi.org/10.1215/S0012-7094-89-05804-3
- Frances Clare Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), no. 1, 41–85. MR 799252, DOI https://doi.org/10.2307/1971369
- Eduard Looijenga, Compactifications defined by arrangements. II. Locally symmetric varieties of type IV, Duke Math. J. 119 (2003), no. 3, 527–588. MR 2003125, DOI https://doi.org/10.1215/S0012-7094-03-11933-X
- Eduard Looijenga and Rogier Swierstra, The period map for cubic threefolds, Compos. Math. 143 (2007), no. 4, 1037–1049. MR 2339838, DOI https://doi.org/10.1112/S0010437X0700293X
- D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238 (French). MR 376704, DOI https://doi.org/10.1007/BF01389851
- Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. MR 2004218
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- K. G. O’Grady, Irreducible symplectic 4-folds numerically irreducible symplectic 4-folds numerically equivalent to $(K3)^{[2]}$, arXiv:math/0504434v3 [math.AG] (2005), 44 pp.
- È. B. Vinberg and V. L. Popov, Invariant theory, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137–314, 315 (Russian). MR 1100485
- T. G. Room, The Geometry of the Determinantal Loci, Cambridge University Press, 1938.
- Jayant Shah, A complete moduli space for $K3$ surfaces of degree $2$, Ann. of Math. (2) 112 (1980), no. 3, 485–510. MR 595204, DOI https://doi.org/10.2307/1971089
- Jayant Shah, Degenerations of $K3$ surfaces of degree $4$, Trans. Amer. Math. Soc. 263 (1981), no. 2, 271–308. MR 594410, DOI https://doi.org/10.1090/S0002-9947-1981-0594410-2
- Peter Vermeire, On the regularity of powers of ideal sheaves, Compositio Math. 131 (2002), no. 2, 161–172. MR 1898433, DOI https://doi.org/10.1023/A%3A1014913511483
- Claire Voisin, Théorème de Torelli pour les cubiques de ${\bf P}^5$, Invent. Math. 86 (1986), no. 3, 577–601 (French). MR 860684, DOI https://doi.org/10.1007/BF01389270
- C. T. C. Wall, Geometric invariant theory of linear systems, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 57–62. MR 684274, DOI https://doi.org/10.1017/S0305004100060321
- M. Yokoyama, Stability of cubic hypersurfaces of dimension 3 and 4, Preprint Nagoya University.
- Mutsumi Yokoyama, Stability of cubic 3-folds, Tokyo J. Math. 25 (2002), no. 1, 85–105. MR 1908216, DOI https://doi.org/10.3836/tjm/1244208939
References
- D. Allcock, The moduli space of cubic threefolds, J. Algebraic Geom. 12 (2003), no. 2, 201–223. MR 1949641 (2003k:14043)
- ---, Personal communication (2007).
- D. Allcock, J. A. Carlson, and D. Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), no. 4, 659–724. MR 1910264 (2003m:32011)
- ---, The Moduli Space of Cubic Threefolds as a Ball Quotient, arXiv:math/ 0608287v1 [math.AG] (2006), 77 pp.
- P. Aluffi, Singular schemes of hypersurfaces, Duke Math. J. 80 (1995), no. 2, 325–351. MR 1369396 (97b:14057)
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
- V. I. Arnol$’$d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser, Boston, MA, 1985.
- D. Avritzer and R. Miranda, Stability of pencils of quadrics in $\textbf {P}^ 4$, Bol. Soc. Mat. Mexicana (3) 5 (1999), no. 2, 281–300. MR 1738422 (2000j:14014)
- A. Beauville and R. Donagi, La variété des droites d’une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706. MR 818549 (87c:14047)
- W. Fulton and J. Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249 (93a:20069)
- P. A. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994. MR 1288523 (95d:14001)
- M. Gross and S. Popescu, Equations of $(1,d)$-polarized abelian surfaces, Math. Ann. 310 (1998), no. 2, 333–377. MR 1602020 (99d:14046)
- J. Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. MR 1416564 (97e:14001)
- B. Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), no. 1, 1–23. MR 1738215 (2001g:14066)
- F. Kirwan, Moduli spaces of degree $d$ hypersurfaces in $\textbf {P}_ n$, Duke Math. J. 58 (1989), no. 1, 39–78. MR 1016413 (90k:14006)
- F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), no. 1, 41–85. MR 799252 (87a:14010)
- E. Looijenga, Compactifications defined by arrangements. II. Locally symmetric varieties of type IV, Duke Math. J. 119 (2003), no. 3, 527–588. MR 2003125 (2004i:14042b)
- E. Looijenga and R. Swierstra, The period map for cubic threefolds, Compositio Math. 143 (2007), no. 4, 1037–1049. MR 2339838
- D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238. MR 0376704 (51:12879)
- S. Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. MR 2004218 (2004g:14002)
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
- K. G. O’Grady, Irreducible symplectic 4-folds numerically irreducible symplectic 4-folds numerically equivalent to $(K3)^{[2]}$, arXiv:math/0504434v3 [math.AG] (2005), 44 pp.
- V. L. Popov and È. B. Vinberg, Invariant theory, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137–314, 315. MR 1100485 (92d:14010)
- T. G. Room, The Geometry of the Determinantal Loci, Cambridge University Press, 1938.
- J. Shah, A complete moduli space for $K3$ surfaces of degree $2$, Ann. of Math. (2) 112 (1980), no. 3, 485–510. MR 595204 (82j:14030)
- ---, Degenerations of $K3$ surfaces of degree $4$, Trans. Amer. Math. Soc. 263 (1981), no. 2, 271–308. MR 594410 (82g:14039)
- P. Vermeire, On the regularity of powers of ideal sheaves, Compositio Math. 131 (2002), no. 2, 161–172. MR 1898433 (2003f:14016)
- C. Voisin, Théorème de Torelli pour les cubiques de $\textbf {P}^ 5$, Invent. Math. 86 (1986), no. 3, 577–601. MR 860684 (88g:14006)
- C. T. C. Wall, Geometric invariant theory of linear systems, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 57–62. MR 684274 (84m:14012)
- M. Yokoyama, Stability of cubic hypersurfaces of dimension 3 and 4, Preprint Nagoya University.
- ---, Stability of cubic 3-folds, Tokyo J. Math. 25 (2002), no. 1, 85–105. MR 1908216 (2003e:14031)
Additional Information
Radu Laza
Affiliation:
Department of Mathematics, University of Michigan, 3863 East Hall, Ann Arbor, Michigan 48109
MR Author ID:
692317
ORCID:
0000-0001-9631-1361
Email:
rlaza@umich.edu
Received by editor(s):
March 7, 2007
Received by editor(s) in revised form:
October 10, 2007
Published electronically:
June 5, 2008