A Giambelli formula for classical $G/P$ spaces
Author:
Harry Tamvakis
Journal:
J. Algebraic Geom. 23 (2014), 245-278
DOI:
https://doi.org/10.1090/S1056-3911-2013-00604-9
Published electronically:
July 11, 2013
MathSciNet review:
3166391
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $G$ be a classical complex Lie group, $P$ any parabolic subgroup of $G$, and $G/P$ the corresponding partial flag variety. We prove an explicit combinatorial Giambelli formula which expresses an arbitrary Schubert class in $\mathrm {H}^*(G/P)$ as a polynomial in certain special Schubert class generators. Our formula extends to one that applies to the torus-equivariant cohomology ring of $G/P$ and to the setting of symplectic and orthogonal degeneracy loci.
References
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. MR 1454400, DOI https://doi.org/10.1006/aima.1997.1627
- Sara Billey, Transition equations for isotropic flag manifolds, Discrete Math. 193 (1998), no. 1-3, 69–84. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661363, DOI https://doi.org/10.1016/S0012-365X%2898%2900135-6
- Sara Billey and Mark Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), no. 2, 443–482. MR 1290232, DOI https://doi.org/10.1090/S0894-0347-1995-1290232-1
- Sara C. Billey, William Jockusch, and Richard P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374. MR 1241505, DOI https://doi.org/10.1023/A%3A1022419800503
- Sara Billey and Tao Kai Lam, Vexillary elements in the hyperoctahedral group, J. Algebraic Combin. 8 (1998), no. 2, 139–152. MR 1648468, DOI https://doi.org/10.1023/A%3A1008633710118
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI https://doi.org/10.2307/1969728
- Anders Skovsted Buch and William Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), no. 3, 665–687. MR 1669280, DOI https://doi.org/10.1007/s002220050297
- Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis, Quantum Pieri rules for isotropic Grassmannians, Invent. Math. 178 (2009), no. 2, 345–405. MR 2545685, DOI https://doi.org/10.1007/s00222-009-0201-y
- A. S. Buch, A. Kresch and H. Tamvakis, A Giambelli formula for isotropic Grassmannians, Preprint (2008), arXiv:0811.2781.
- Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis, Quantum Giambelli formulas for isotropic Grassmannians, Math. Ann. 354 (2012), no. 3, 801–812. MR 2983068, DOI https://doi.org/10.1007/s00208-011-0752-2
- A. S. Buch, A. Kresch and H. Tamvakis, A Giambelli formula for even orthogonal Grassmannians, Preprint (2011), arXiv:1109.6669.
- Anders S. Buch, Andrew Kresch, Harry Tamvakis, and Alexander Yong, Schubert polynomials and quiver formulas, Duke Math. J. 122 (2004), no. 1, 125–143. MR 2046809, DOI https://doi.org/10.1215/S0012-7094-04-12214-6
- Ionuţ Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524. MR 1695799, DOI https://doi.org/10.1215/S0012-7094-99-09815-0
- Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301 (French). MR 342522, DOI https://doi.org/10.1007/BF01418790
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
- Paul Edelman and Curtis Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42–99. MR 871081, DOI https://doi.org/10.1016/0001-8708%2887%2990063-6
- Dan Edidin and William Graham, Characteristic classes and quadric bundles, Duke Math. J. 78 (1995), no. 2, 277–299. MR 1333501, DOI https://doi.org/10.1215/S0012-7094-95-07812-0
- Charles Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. (2) 35 (1934), no. 2, 396–443 (French). MR 1503170, DOI https://doi.org/10.2307/1968440
- Sergey Fomin, Sergei Gelfand, and Alexander Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), no. 3, 565–596. MR 1431829, DOI https://doi.org/10.1090/S0894-0347-97-00237-3
- Sergey Fomin and Curtis Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179–200. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661368, DOI https://doi.org/10.1016/S0012-365X%2898%2900140-X
- Sergey Fomin and Anatol N. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), 1996, pp. 123–143. MR 1394950, DOI https://doi.org/10.1016/0012-365X%2895%2900132-G
- Sergey Fomin and Anatol N. Kirillov, Combinatorial $B_n$-analogues of Schubert polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3591–3620. MR 1340174, DOI https://doi.org/10.1090/S0002-9947-96-01558-9
- Sergey Fomin and Richard P. Stanley, Schubert polynomials and the nil-Coxeter algebra, Adv. Math. 103 (1994), no. 2, 196–207. MR 1265793, DOI https://doi.org/10.1006/aima.1994.1009
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177, DOI https://doi.org/10.1215/S0012-7094-92-06516-1
- William Fulton, Schubert varieties in flag bundles for the classical groups, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 241–262. MR 1360506
- William Fulton, Determinantal formulas for orthogonal and symplectic degeneracy loci, J. Differential Geom. 43 (1996), no. 2, 276–290. MR 1424427
- William Fulton, Universal Schubert polynomials, Duke Math. J. 96 (1999), no. 3, 575–594. MR 1671215, DOI https://doi.org/10.1215/S0012-7094-99-09618-7
- G. Z. Giambelli, Risoluzione del problema degli spazi secanti, Mem. R. Accad. Sci. Torino (2) 52 (1902), 171–211.
- William Graham, The class of the diagonal in flag bundles, J. Differential Geom. 45 (1997), no. 3, 471–487. MR 1472885
- A. Grothendieck, Quelques propriétés fondamentales en théorie des intersections, Séminaire C. Chevalley 3 (1958), exp. no. 4, 1–36.
- Mark D. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), no. 1-3, 79–113. MR 1158783, DOI https://doi.org/10.1016/0012-365X%2892%2990368-P
- Takeshi Ikeda, Leonardo C. Mihalcea, and Hiroshi Naruse, Double Schubert polynomials for the classical groups, Adv. Math. 226 (2011), no. 1, 840–886. MR 2735777, DOI https://doi.org/10.1016/j.aim.2010.07.008
- G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153–162. MR 338006, DOI https://doi.org/10.1007/BF02392111
- Allen Knutson, Ezra Miller, and Mark Shimozono, Four positive formulae for type $A$ quiver polynomials, Invent. Math. 166 (2006), no. 2, 229–325. MR 2249801, DOI https://doi.org/10.1007/s00222-006-0505-0
- Witold Kraśkiewicz, Reduced decompositions in hyperoctahedral groups, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 16, 903–907 (English, with French summary). MR 1055219
- A. Kresch and H. Tamvakis, Double Schubert polynomials and degeneracy loci for the classical groups, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 6, 1681–1727 (English, with English and French summaries). MR 1952528
- Andrew Kresch and Harry Tamvakis, Quantum cohomology of the Lagrangian Grassmannian, J. Algebraic Geom. 12 (2003), no. 4, 777–810. MR 1993764, DOI https://doi.org/10.1090/S1056-3911-03-00347-3
- Andrew Kresch and Harry Tamvakis, Quantum cohomology of orthogonal Grassmannians, Compos. Math. 140 (2004), no. 2, 482–500. MR 2027200, DOI https://doi.org/10.1112/S0010437X03000204
- Tao Kai Lam, B and D analogues of stable Schubert polynomials and related insertion algorithms, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2716557
- T. K. Lam, $B_n$ Stanley symmetric functions, Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), 1996, pp. 241–270 (English, with English and French summaries). MR 1417298, DOI https://doi.org/10.1016/S0012-365X%2896%2983018-4
- Alain Lascoux and Piotr Pragacz, Operator calculus for $\widetilde Q$-polynomials and Schubert polynomials, Adv. Math. 140 (1998), no. 1, 1–43. MR 1656481, DOI https://doi.org/10.1006/aima.1998.1757
- Alain Lascoux and Piotr Pragacz, Orthogonal divided differences and Schubert polynomials, $\~P$-functions, and vertex operators, Michigan Math. J. 48 (2000), 417–441. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786499, DOI https://doi.org/10.1307/mmj/1030132727
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633 (French, with English summary). MR 686357
- Alain Lascoux and Marcel-Paul Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys. 10 (1985), no. 2-3, 111–124. MR 815233, DOI https://doi.org/10.1007/BF00398147
- I. G. Macdonald, Notes on Schubert polynomials, Publ. LACIM 6, Univ. de Québec à Montréal, Montréal, 1991.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959), 253–286. MR 106911, DOI https://doi.org/10.1112/plms/s3-9.2.253
- M. Pieri, Sul problema degli spazi secanti. Nota 1${}^a$, Rend. Ist. Lombardo (2) 26 (1893), 534–546.
- Piotr Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 413–454. MR 974411
- Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI https://doi.org/10.1007/BFb0083503
- Piotr Pragacz and Jan Ratajski, A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians, J. Reine Angew. Math. 476 (1996), 143–189. MR 1401699
- P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; $\~Q$-polynomial approach, Compositio Math. 107 (1997), no. 1, 11–87. MR 1457343, DOI https://doi.org/10.1023/A%3A1000182205320
- Bruce E. Sagan, Shifted tableaux, Schur $Q$-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), no. 1, 62–103. MR 883894, DOI https://doi.org/10.1016/0097-3165%2887%2990047-1
- I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. reine angew. Math. 139 (1911), 155–250.
- Mark Shimozono, Multiplying Schur $Q$-functions, J. Combin. Theory Ser. A 87 (1999), no. 1, 198–232. MR 1698253, DOI https://doi.org/10.1006/jcta.1998.2954
- Richard P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372. MR 782057, DOI https://doi.org/10.1016/S0195-6698%2884%2980039-6
- John R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no. 1, 87–134. MR 991411, DOI https://doi.org/10.1016/0001-8708%2889%2990005-4
- John R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285–1332. MR 1389789, DOI https://doi.org/10.1090/S0002-9947-97-01805-9
- Harry Tamvakis, Quantum cohomology of isotropic Grassmannians, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 311–338. MR 2166090, DOI https://doi.org/10.1007/0-8176-4417-2_14
- Harry Tamvakis, Schubert polynomials and Arakelov theory of symplectic flag varieties, J. Lond. Math. Soc. (2) 82 (2010), no. 1, 89–109. MR 2669642, DOI https://doi.org/10.1112/jlms/jdq015
- Harry Tamvakis, Schubert polynomials and Arakelov theory of orthogonal flag varieties, Math. Z. 268 (2011), no. 1-2, 355–370. MR 2805440, DOI https://doi.org/10.1007/s00209-010-0676-7
- Harry Tamvakis, Giambelli, Pieri, and tableau formulas via raising operators, J. Reine Angew. Math. 652 (2011), 207–244. MR 2787357, DOI https://doi.org/10.1515/CRELLE.2011.023
- Dale Raymond Worley, A THEORY OF SHIFTED YOUNG TABLEAUX, ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941073
- Alexander Yong, On combinatorics of quiver component formulas, J. Algebraic Combin. 21 (2005), no. 3, 351–371. MR 2142844, DOI https://doi.org/10.1007/s10801-005-6916-y
- Alfred Young, On Quantitative Substitutional Analysis, Proc. London Math. Soc. (2) 34 (1932), no. 3, 196–230. MR 1576146, DOI https://doi.org/10.1112/plms/s2-34.1.196
References
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933 (55 \#2941)
- Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. MR 1454400 (98j:14067), DOI https://doi.org/10.1006/aima.1997.1627
- Sara Billey, Transition equations for isotropic flag manifolds, Discrete Math. 193 (1998), no. 1-3, 69–84. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661363 (99m:05165), DOI https://doi.org/10.1016/S0012-365X%2898%2900135-6
- Sara Billey and Mark Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), no. 2, 443–482. MR 1290232 (98e:05109), DOI https://doi.org/10.2307/2152823
- Sara C. Billey, William Jockusch, and Richard P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374. MR 1241505 (94m:05197), DOI https://doi.org/10.1023/A%3A1022419800503
- Sara Billey and Tao Kai Lam, Vexillary elements in the hyperoctahedral group, J. Algebraic Combin. 8 (1998), no. 2, 139–152. MR 1648468 (2000d:05124), DOI https://doi.org/10.1023/A%3A1008633710118
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 0051508 (14,490e)
- Anders Skovsted Buch and William Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), no. 3, 665–687. MR 1669280 (2000f:14087), DOI https://doi.org/10.1007/s002220050297
- Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis, Quantum Pieri rules for isotropic Grassmannians, Invent. Math. 178 (2009), no. 2, 345–405. MR 2545685 (2011a:14112), DOI https://doi.org/10.1007/s00222-009-0201-y
- A. S. Buch, A. Kresch and H. Tamvakis, A Giambelli formula for isotropic Grassmannians, Preprint (2008), arXiv:0811.2781.
- Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis, Quantum Giambelli formulas for isotropic Grassmannians, Math. Ann. 354 (2012), no. 3, 801–812. MR 2983068, DOI https://doi.org/10.1007/s00208-011-0752-2
- A. S. Buch, A. Kresch and H. Tamvakis, A Giambelli formula for even orthogonal Grassmannians, Preprint (2011), arXiv:1109.6669.
- Anders S. Buch, Andrew Kresch, Harry Tamvakis, and Alexander Yong, Schubert polynomials and quiver formulas, Duke Math. J. 122 (2004), no. 1, 125–143. MR 2046809 (2005b:05218), DOI https://doi.org/10.1215/S0012-7094-04-12214-6
- Ionuţ Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524. MR 1695799 (2000d:14058), DOI https://doi.org/10.1215/S0012-7094-99-09815-0
- Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301 (French). MR 0342522 (49 \#7268)
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. MR 0354697 (50 \#7174)
- Paul Edelman and Curtis Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42–99. MR 871081 (88b:05012), DOI https://doi.org/10.1016/0001-8708%2887%2990063-6
- Dan Edidin and William Graham, Characteristic classes and quadric bundles, Duke Math. J. 78 (1995), no. 2, 277–299. MR 1333501 (98a:14004), DOI https://doi.org/10.1215/S0012-7094-95-07812-0
- Charles Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. (2) 35 (1934), no. 2, 396–443 (French). MR 1503170, DOI https://doi.org/10.2307/1968440
- Sergey Fomin, Sergei Gelfand, and Alexander Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), no. 3, 565–596. MR 1431829 (98d:14063), DOI https://doi.org/10.1090/S0894-0347-97-00237-3
- Sergey Fomin and Curtis Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179–200. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661368 (2000c:05149), DOI https://doi.org/10.1016/S0012-365X%2898%2900140-X
- Sergey Fomin and Anatol N. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), 1996, pp. 123–143. MR 1394950 (98b:05101), DOI https://doi.org/10.1016/0012-365X%2895%2900132-G
- Sergey Fomin and Anatol N. Kirillov, Combinatorial $B_n$-analogues of Schubert polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3591–3620. MR 1340174 (98e:05110), DOI https://doi.org/10.1090/S0002-9947-96-01558-9
- Sergey Fomin and Richard P. Stanley, Schubert polynomials and the nil-Coxeter algebra, Adv. Math. 103 (1994), no. 2, 196–207. MR 1265793 (95f:05115), DOI https://doi.org/10.1006/aima.1994.1009
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177 (93e:14007), DOI https://doi.org/10.1215/S0012-7094-92-06516-1
- William Fulton, Schubert varieties in flag bundles for the classical groups, (Ramat Gan, 1993) Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 241–262. MR 1360506 (98b:14038)
- William Fulton, Determinantal formulas for orthogonal and symplectic degeneracy loci, J. Differential Geom. 43 (1996), no. 2, 276–290. MR 1424427 (98d:14004)
- William Fulton, Universal Schubert polynomials, Duke Math. J. 96 (1999), no. 3, 575–594. MR 1671215 (99m:14093), DOI https://doi.org/10.1215/S0012-7094-99-09618-7
- G. Z. Giambelli, Risoluzione del problema degli spazi secanti, Mem. R. Accad. Sci. Torino (2) 52 (1902), 171–211.
- William Graham, The class of the diagonal in flag bundles, J. Differential Geom. 45 (1997), no. 3, 471–487. MR 1472885 (98j:14070)
- A. Grothendieck, Quelques propriétés fondamentales en théorie des intersections, Séminaire C. Chevalley 3 (1958), exp. no. 4, 1–36.
- Mark D. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), no. 1-3, 79–113. MR 1158783 (93h:05173), DOI https://doi.org/10.1016/0012-365X%2892%2990368-P
- Takeshi Ikeda, Leonardo C. Mihalcea, and Hiroshi Naruse, Double Schubert polynomials for the classical groups, Adv. Math. 226 (2011), no. 1, 840–886. MR 2735777 (2011k:14063), DOI https://doi.org/10.1016/j.aim.2010.07.008
- G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153–162. MR 0338006 (49 \#2773)
- Allen Knutson, Ezra Miller, and Mark Shimozono, Four positive formulae for type $A$ quiver polynomials, Invent. Math. 166 (2006), no. 2, 229–325. MR 2249801 (2007k:14098), DOI https://doi.org/10.1007/s00222-006-0505-0
- Witold Kraśkiewicz, Reduced decompositions in hyperoctahedral groups, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 16, 903–907 (English, with French summary). MR 1055219 (91h:05008)
- A. Kresch and H. Tamvakis, Double Schubert polynomials and degeneracy loci for the classical groups, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 6, 1681–1727 (English, with English and French summaries). MR 1952528 (2004d:14078)
- Andrew Kresch and Harry Tamvakis, Quantum cohomology of the Lagrangian Grassmannian, J. Algebraic Geom. 12 (2003), no. 4, 777–810. MR 1993764 (2004h:14063), DOI https://doi.org/10.1090/S1056-3911-03-00347-3
- Andrew Kresch and Harry Tamvakis, Quantum cohomology of orthogonal Grassmannians, Compos. Math. 140 (2004), no. 2, 482–500. MR 2027200 (2005d:14080), DOI https://doi.org/10.1112/%5Cspace%20S0010437X03000204
- Tao Kai Lam, B and D analogues of stable Schubert polynomials and related insertion algorithms, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2716557
- T. K. Lam, $B_n$ Stanley symmetric functions, Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), 1996, pp. 241–270 (English, with English and French summaries). MR 1417298 (98a:05151), DOI https://doi.org/10.1016/S0012-365X%2896%2983018-4
- Alain Lascoux and Piotr Pragacz, Operator calculus for $\widetilde Q$-polynomials and Schubert polynomials, Adv. Math. 140 (1998), no. 1, 1–43. MR 1656481 (2000e:05164), DOI https://doi.org/10.1006/aima.1998.1757
- Alain Lascoux and Piotr Pragacz, Orthogonal divided differences and Schubert polynomials, $\tilde {P}$-functions, and vertex operators, Michigan Math. J. 48 (2000), 417–441. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786499 (2003b:05157), DOI https://doi.org/10.1307/mmj/1030132727
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739 (83e:14039), DOI https://doi.org/10.1090/%5Cspace%20conm/088/1000001
- Alain Lascoux and Marcel-Paul Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633 (French, with English summary). MR 686357 (84b:14030)
- Alain Lascoux and Marcel-Paul Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys. 10 (1985), no. 2-3, 111–124. MR 815233 (87g:20021), DOI https://doi.org/10.1007/BF00398147
- I. G. Macdonald, Notes on Schubert polynomials, Publ. LACIM 6, Univ. de Québec à Montréal, Montréal, 1991.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144 (96h:05207)
- D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959), 253–286. MR 0106911 (21 \#5641)
- M. Pieri, Sul problema degli spazi secanti. Nota 1${}^a$, Rend. Ist. Lombardo (2) 26 (1893), 534–546.
- Piotr Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 413–454. MR 974411 (90e:14004)
- Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989 (93h:05170), DOI https://doi.org/10.1007/BFb0083503
- Piotr Pragacz and Jan Ratajski, A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians, J. Reine Angew. Math. 476 (1996), 143–189. MR 1401699 (97i:14032)
- P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; $\tilde {Q}$-polynomial approach, Compositio Math. 107 (1997), no. 1, 11–87. MR 1457343 (98g:14063), DOI https://doi.org/10.1023/A%3A1000182205320
- Bruce E. Sagan, Shifted tableaux, Schur $Q$-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), no. 1, 62–103. MR 883894 (88f:05011), DOI https://doi.org/10.1016/0097-3165%2887%2990047-1
- I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. reine angew. Math. 139 (1911), 155–250.
- Mark Shimozono, Multiplying Schur $Q$-functions, J. Combin. Theory Ser. A 87 (1999), no. 1, 198–232. MR 1698253 (2000g:05148), DOI https://doi.org/10.1006/jcta.1998.2954
- Richard P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372. MR 782057 (86i:05011)
- John R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no. 1, 87–134. MR 991411 (90k:20026), DOI https://doi.org/10.1016/0001-8708%2889%2990005-4
- John R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285–1332. MR 1389789 (97h:05181), DOI https://doi.org/10.1090/S0002-9947-97-01805-9
- Harry Tamvakis, Quantum cohomology of isotropic Grassmannians, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 311–338. MR 2166090 (2006k:14103), DOI https://doi.org/10.1007/0-8176-4417-2_14
- Harry Tamvakis, Schubert polynomials and Arakelov theory of symplectic flag varieties, J. Lond. Math. Soc. (2) 82 (2010), no. 1, 89–109. MR 2669642 (2011j:14107), DOI https://doi.org/10.1112/jlms/jdq015
- Harry Tamvakis, Schubert polynomials and Arakelov theory of orthogonal flag varieties, Math. Z. 268 (2011), no. 1-2, 355–370. MR 2805440 (2012g:14045), DOI https://doi.org/10.1007/s00209-010-0676-7
- Harry Tamvakis, Giambelli, Pieri, and tableau formulas via raising operators, J. Reine Angew. Math. 652 (2011), 207–244. MR 2787357 (2012e:14108), DOI https://doi.org/10.1515/CRELLE.2011.023
- Dale Raymond Worley, A theory of shifted Young tableaux, ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941073
- Alexander Yong, On combinatorics of quiver component formulas, J. Algebraic Combin. 21 (2005), no. 3, 351–371. MR 2142844 (2006d:14056), DOI https://doi.org/10.1007/s10801-005-6916-y
- Alfred Young, On quantitative substitutional analysis, Proc. London Math. Soc. S2-34, no. 1, 196. MR 1576146, DOI https://doi.org/10.1112/plms/s2-34.1.196
Additional Information
Harry Tamvakis
Affiliation:
Department of Mathematics, University of Maryland, 1301 Mathematics Building, College Park, Maryland 20742
Email:
harryt@math.umd.edu
Received by editor(s):
February 2, 2011
Received by editor(s) in revised form:
May 18, 2011
Published electronically:
July 11, 2013
Additional Notes:
The author was supported in part by NSF Grant DMS-0901341.
Article copyright:
© Copyright 2013
University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.