Beilinson-Flach elements and Euler systems II: The Birch-Swinnerton-Dyer conjecture for Hasse-Weil-Artin $L$-series
Authors:
Massimo Bertolini, Henri Darmon and Victor Rotger
Journal:
J. Algebraic Geom. 24 (2015), 569-604
DOI:
https://doi.org/10.1090/S1056-3911-2015-00675-0
Published electronically:
March 23, 2015
MathSciNet review:
3344765
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $E$ be an elliptic curve over $\mathbb {Q}$ and let $\varrho$ be an odd, irreducible two-dimensional Artin representation. This article proves the Birch and Swinnerton-Dyer conjecture in analytic rank zero for the Hasse-Weil-Artin $L$-series $L(E,\varrho ,s)$, namely, the implication \[ L(E,\varrho ,1) \ne 0\quad \Rightarrow \quad (E(H)\otimes \varrho )^{\mathrm {Gal}(H/\mathbb {Q})} = 0,\] where $H$ is the finite extension of $\mathbb {Q}$ cut out by $\varrho$. The proof relies on $p$-adic families of global Galois cohomology classes arising from Beilinson-Flach elements in a tower of products of modular curves.
References
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999
- J. Bellaiche, An introduction to the conjecture of Bloch and Kato, available at http://www.people.brandeis.edu/~jbellaic/BKHawaii5.pdf.
- M. Bertolini, F. Castella, H. Darmon, S. Dasgupta, K. Prasanna, and V. Rotger, $p$-adic $L$-functions and Euler systems: a tale in two trilogies, Proceedings of the 2011 Durham symposium on Automorphic forms and Galois representations, London Math. Society Lecture Notes, 414, 2014, pp. 52–101.
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI https://doi.org/10.1090/S0894-0347-01-00370-8
- M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler Systems I: syntomic regulators and $p$-adic Rankin $L$-series, J. Algebraic Geom. 24 (2015), no. 2, 355–378.
- Amnon Besser, On the syntomic regulator for $K_1$ of a surface, Israel J. Math. 190 (2012), 29–66. MR 2956231, DOI https://doi.org/10.1007/s11856-011-0188-0
- Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888
- A. Besser, D. Loeffler, and S. Zerbes, Finite polynomial cohomology for general varieties, preprint, 2014.
- J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR 463176, DOI https://doi.org/10.1007/BF01402975
- Robert F. Coleman, A $p$-adic Shimura isomorphism and $p$-adic periods of modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21–51. MR 1279600, DOI https://doi.org/10.1090/conm/165/01602
- Robert Coleman and Adrian Iovita, Hidden structures on semistable curves, Astérisque 331 (2010), 179–254 (English, with English and French summaries). MR 2667889
- S. Dasgupta, Factorization of $p$-adic Rankin $L$-series, submitted.
- Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 779–832 (English, with English and French summaries). MR 3250064, DOI https://doi.org/10.24033/asens.2227
- H. Darmon and V. Rotger, Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin $L$-functions, submitted.
- Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693, DOI https://doi.org/10.1007/BF01232029
- Benedict H. Gross, On the factorization of $p$-adic $L$-series, Invent. Math. 57 (1980), no. 1, 83–95. MR 564185, DOI https://doi.org/10.1007/BF01389819
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- G. Kings, Eisenstein classes, elliptic Soulé elements, and the $\ell$-adic elliptic polylogarithm, preprint, 2013.
- G. Kings, D. Loeffler, and S. L. Zerbes, Euler systems for higher weight Rankin convolutions, preprint.
- Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485–504. MR 2551763, DOI https://doi.org/10.1007/s00222-009-0205-7
- V. A. Kolyvagin, Finiteness of $E({\bf Q})$ and SH$(E,{\bf Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR 954295, DOI https://doi.org/10.1070/IM1989v032n03ABEH000779
- Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), no. 2, 653–771. MR 3224721, DOI https://doi.org/10.4007/annals.2014.180.2.6
- A. Lei, D. Loeffler, and S. L. Zerbes, Euler systems for modular forms over imaginary quadratic fields, Compositio Math., to appear.
- David Loeffler and Sarah Livia Zerbes, Iwasawa theory and $p$-adic $L$-functions over $\Bbb {Z}_p^2$-extensions, Int. J. Number Theory 10 (2014), no. 8, 2045–2095. MR 3273476, DOI https://doi.org/10.1142/S1793042114500699
- B. Mazur and T. Weston, Euler systems and Arithmetic Geometry, lecture notes (unpublished), 168 pp.
- B. Mazur and A. Wiles, Class fields of abelian extensions of ${\bf Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI https://doi.org/10.1007/BF01388599
- Jan Nekovář, $p$-adic Abel-Jacobi maps and $p$-adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) CRM Proc. Lecture Notes, vol. 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367–379. MR 1738867, DOI https://doi.org/10.1090/crmp/024/18
- J. Nekovář and W. Niziol, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, with appendices by L. Berger and F. Déglise, preprint, 2014, available at http://www.math.jussieu.fr/~nekovar/pu.
- Masami Ohta, Ordinary $p$-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000), no. 3, 557–583. MR 1800769, DOI https://doi.org/10.1007/s002080000119
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques des représentations $p$-adiques, Astérisque 229 (1995), 198 (French, with English and French summaries). MR 1327803
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI https://doi.org/10.2307/2118560
- Tom Weston, Algebraic cycles, modular forms and Euler systems, J. Reine Angew. Math. 543 (2002), 103–145. MR 1887880, DOI https://doi.org/10.1515/crll.2002.011
- A. Wiles, On ordinary $\lambda $-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243, DOI https://doi.org/10.1007/BF01394275
References
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999 (86h:11103)
- J. Bellaiche, An introduction to the conjecture of Bloch and Kato, available at http://www.people.brandeis.edu/~jbellaic/BKHawaii5.pdf.
- M. Bertolini, F. Castella, H. Darmon, S. Dasgupta, K. Prasanna, and V. Rotger, $p$-adic $L$-functions and Euler systems: a tale in two trilogies, Proceedings of the 2011 Durham symposium on Automorphic forms and Galois representations, London Math. Society Lecture Notes, 414, 2014, pp. 52–101.
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf {Q}$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). MR 1839918 (2002d:11058), DOI https://doi.org/10.1090/S0894-0347-01-00370-8
- M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler Systems I: syntomic regulators and $p$-adic Rankin $L$-series, J. Algebraic Geom. 24 (2015), no. 2, 355–378.
- Amnon Besser, On the syntomic regulator for $K_1$ of a surface, Israel J. Math. 190 (2012), 29–66. MR 2956231, DOI https://doi.org/10.1007/s11856-011-0188-0
- Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888 (92g:11063)
- A. Besser, D. Loeffler, and S. Zerbes, Finite polynomial cohomology for general varieties, preprint, 2014.
- J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR 0463176 (57 \#3134)
- Robert F. Coleman, A $p$-adic Shimura isomorphism and $p$-adic periods of modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21–51. MR 1279600 (96a:11050), DOI https://doi.org/10.1090/conm/165/01602
- Robert Coleman and Adrian Iovita, Hidden structures on semistable curves, Astérisque 331 (2010), 179–254 (English, with English and French summaries). MR 2667889 (2011g:11119)
- S. Dasgupta, Factorization of $p$-adic Rankin $L$-series, submitted.
- Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 779–832 (English, with English and French summaries). MR 3250064
- H. Darmon and V. Rotger, Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin $L$-functions, submitted.
- Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693 (93g:11066), DOI https://doi.org/10.1007/BF01232029
- Benedict H. Gross, On the factorization of $p$-adic $L$-series, Invent. Math. 57 (1980), no. 1, 83–95. MR 564185 (82a:12010), DOI https://doi.org/10.1007/BF01389819
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135 (94j:11044)
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Cohomologies $p$-adiques et applications arithmétiques. III. Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). MR 2104361 (2006b:11051)
- G. Kings, Eisenstein classes, elliptic Soulé elements, and the $\ell$-adic elliptic polylogarithm, preprint, 2013.
- G. Kings, D. Loeffler, and S. L. Zerbes, Euler systems for higher weight Rankin convolutions, preprint.
- Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485–504. MR 2551763 (2010k:11087), DOI https://doi.org/10.1007/s00222-009-0205-7
- V. A. Kolyvagin, Finiteness of $E(\textbf {Q})$ and SH$(E,\textbf {Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR 954295 (89m:11056)
- Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), no. 2, 653–771. MR 3224721, DOI https://doi.org/10.4007/annals.2014.180.2.6
- A. Lei, D. Loeffler, and S. L. Zerbes, Euler systems for modular forms over imaginary quadratic fields, Compositio Math., to appear.
- David Loeffler and Sarah Livia Zerbes, Iwasawa theory and $p$-adic $L$-functions over $\mathbb {Z}_p^2$-extensions, Int. J. Number Theory 10 (2014), no. 8, 2045–2095. MR 3273476, DOI https://doi.org/10.1142/S1793042114500699
- B. Mazur and T. Weston, Euler systems and Arithmetic Geometry, lecture notes (unpublished), 168 pp.
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853 (85m:11069), DOI https://doi.org/10.1007/BF01388599
- Jan Nekovář, $p$-adic Abel-Jacobi maps and $p$-adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) CRM Proc. Lecture Notes, vol. 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367–379. MR 1738867 (2002e:14011)
- J. Nekovář and W. Niziol, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, with appendices by L. Berger and F. Déglise, preprint, 2014, available at http://www.math.jussieu.fr/~nekovar/pu.
- Masami Ohta, Ordinary $p$-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000), no. 3, 557–583. MR 1800769 (2002c:11049), DOI https://doi.org/10.1007/s002080000119
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques des représentations $p$-adiques, Astérisque 229 (1995), 198 pp (French, with English and French summaries). MR 1327803 (96e:11062)
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036 (96d:11072), DOI https://doi.org/10.2307/2118560
- Tom Weston, Algebraic cycles, modular forms and Euler systems, J. Reine Angew. Math. 543 (2002), 103–145. MR 1887880 (2003d:11079), DOI https://doi.org/10.1515/crll.2002.011
- A. Wiles, On ordinary $\lambda$-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243 (89j:11051), DOI https://doi.org/10.1007/BF01394275
Additional Information
Massimo Bertolini
Affiliation:
Fakultät für Mathematik, Universität Duisburg-Essen, Ellernstr. 29, 45326 Essen, Germany
MR Author ID:
249679
Email:
massimo.bertolini@uni-due.de
Henri Darmon
Affiliation:
Department of Mathematics and Statistics, McGill University, Burnside Hall, Room 1111, Montréal, Canada
MR Author ID:
271251
Email:
darmon@math.mcgill.ca
Victor Rotger
Affiliation:
Departament de Matemàtica Aplicada II, Universitat Politècnica de Cata- lunya, Despatx 413, C. Jordi Girona 1-3, 08034 Barcelona, Spain
MR Author ID:
698263
Email:
victor.rotger@upc.edu
Received by editor(s):
September 7, 2014
Received by editor(s) in revised form:
December 10, 2014
Published electronically:
March 23, 2015
Article copyright:
© Copyright 2015
University Press, Inc.