Skip to Main Content
Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Beilinson-Flach elements and Euler systems II: The Birch-Swinnerton-Dyer conjecture for Hasse-Weil-Artin $L$-series

Authors: Massimo Bertolini, Henri Darmon and Victor Rotger
Journal: J. Algebraic Geom. 24 (2015), 569-604
Published electronically: March 23, 2015
MathSciNet review: 3344765
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $E$ be an elliptic curve over $\mathbb {Q}$ and let $\varrho$ be an odd, irreducible two-dimensional Artin representation. This article proves the Birch and Swinnerton-Dyer conjecture in analytic rank zero for the Hasse-Weil-Artin $L$-series $L(E,\varrho ,s)$, namely, the implication \[ L(E,\varrho ,1) \ne 0\quad \Rightarrow \quad (E(H)\otimes \varrho )^{\mathrm {Gal}(H/\mathbb {Q})} = 0,\] where $H$ is the finite extension of $\mathbb {Q}$ cut out by $\varrho$. The proof relies on $p$-adic families of global Galois cohomology classes arising from Beilinson-Flach elements in a tower of products of modular curves.

References [Enhancements On Off] (What's this?)


Additional Information

Massimo Bertolini
Affiliation: Fakultät für Mathematik, Universität Duisburg-Essen, Ellernstr. 29, 45326 Essen, Germany
MR Author ID: 249679

Henri Darmon
Affiliation: Department of Mathematics and Statistics, McGill University, Burnside Hall, Room 1111, Montréal, Canada
MR Author ID: 271251

Victor Rotger
Affiliation: Departament de Matemàtica Aplicada II, Universitat Politècnica de Cata- lunya, Despatx 413, C. Jordi Girona 1-3, 08034 Barcelona, Spain
MR Author ID: 698263

Received by editor(s): September 7, 2014
Received by editor(s) in revised form: December 10, 2014
Published electronically: March 23, 2015
Article copyright: © Copyright 2015 University Press, Inc.