Images of manifolds with semi-ample anti-canonical divisor
Authors:
Caucher Birkar and Yifei Chen
Journal:
J. Algebraic Geom. 25 (2016), 273-287
DOI:
https://doi.org/10.1090/jag/662
Published electronically:
August 27, 2015
MathSciNet review:
3466352
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
We prove that if $f\colon X\to Z$ is a smooth surjective morphism between projective manifolds and if $-K_X$ is semi-ample, then $-K_Z$ is also semi-ample. This was conjectured by Fujino and Gongyo. We list several counterexamples to show that this fails without the smoothness assumption on $f$.
We prove the above result by proving some results concerning the moduli divisor of the canonical bundle formula associated to a klt-trivial fibration $(X,B)\to Z$.
References
- Florin Ambro, The adjunction conjecture and its applications, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–The Johns Hopkins University. MR 2698988
- Florin Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004), no. 2, 229–255. MR 2153078
- Florin Ambro, The moduli $b$-divisor of an lc-trivial fibration, Compos. Math. 141 (2005), no. 2, 385–403. MR 2134273, DOI https://doi.org/10.1112/S0010437X04001071
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI https://doi.org/10.1090/S0894-0347-09-00649-3
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091
- Osamu Fujino, A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J. 172 (2003), 129–171. MR 2019523, DOI https://doi.org/10.1017/S0027763000008679
- O. Fujino and Y. Gongyo, On images of weak Fano manifolds II, arXiv:1201.1130v1
- Osamu Fujino and Yoshinori Gongyo, On images of weak Fano manifolds, Math. Z. 270 (2012), no. 1-2, 531–544. MR 2875847, DOI https://doi.org/10.1007/s00209-010-0810-6
- Osamu Fujino and Shigefumi Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), no. 1, 167–188. MR 1863025
- Yujiro Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), no. 3, 609–611. MR 1117153, DOI https://doi.org/10.1007/BF01232281
- Yujiro Kawamata, Subadjunction of log canonical divisors for a subvariety of codimension $2$, Birational algebraic geometry (Baltimore, MD, 1996) Contemp. Math., vol. 207, Amer. Math. Soc., Providence, RI, 1997, pp. 79–88. MR 1462926, DOI https://doi.org/10.1090/conm/207/02721
- Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893–899. MR 1646046
- János Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 134–162. MR 2359346, DOI https://doi.org/10.1093/acprof%3Aoso/9780198570615.003.0008
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
- Steven Lu, Yuping Tu, Qi Zhang, and Quan Zheng, On semistability of Albanese maps, Manuscripta Math. 131 (2010), no. 3-4, 531–535. MR 2592095, DOI https://doi.org/10.1007/s00229-009-0322-z
- Yoichi Miyaoka, Relative deformations of morphisms and applications to fibre spaces, Comment. Math. Univ. St. Paul. 42 (1993), no. 1, 1–7. MR 1223183
- Yu. G. Prokhorov and V. V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), no. 1, 151–199. MR 2448282, DOI https://doi.org/10.1090/S1056-3911-08-00498-0
- Qi Zhang, On projective manifolds with nef anticanonical bundles, J. Reine Angew. Math. 478 (1996), 57–60. MR 1409052, DOI https://doi.org/10.1515/crll.1996.478.57
References
- Florin Ambro, The adjunction conjecture and its applications, Thesis (Ph.D.)–The Johns Hopkins University, 1999, ProQuest LLC, Ann Arbor, MI. MR 2698988
- Florin Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004), no. 2, 229–255. MR 2153078 (2006d:14033)
- Florin Ambro, The moduli $b$-divisor of an lc-trivial fibration, Compos. Math. 141 (2005), no. 2, 385–403. MR 2134273 (2006d:14015), DOI https://doi.org/10.1112/S0010437X04001071
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039 (2011f:14023), DOI https://doi.org/10.1090/S0894-0347-09-00649-3
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322 (2012g:14094)
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091 (2002g:14001)
- Osamu Fujino, A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J. 172 (2003), 129–171. MR 2019523 (2005b:14024)
- O. Fujino and Y. Gongyo, On images of weak Fano manifolds II, arXiv:1201.1130v1
- Osamu Fujino and Yoshinori Gongyo, On images of weak Fano manifolds, Math. Z. 270 (2012), no. 1-2, 531–544. MR 2875847, DOI https://doi.org/10.1007/s00209-010-0810-6
- Osamu Fujino and Shigefumi Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), no. 1, 167–188. MR 1863025 (2002h:14091)
- Yujiro Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), no. 3, 609–611. MR 1117153 (92m:14026), DOI https://doi.org/10.1007/BF01232281
- Yujiro Kawamata, Subadjunction of log canonical divisors for a subvariety of codimension $2$, Birational algebraic geometry (Baltimore, MD, 1996) Contemp. Math., vol. 207, Amer. Math. Soc., Providence, RI, 1997, pp. 79–88. MR 1462926 (99a:14024), DOI https://doi.org/10.1090/conm/207/02721
- Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893–899. MR 1646046 (2000d:14020)
- János Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 134–162. MR 2359346, DOI https://doi.org/10.1093/acprof%3Aoso/9780198570615.003.0008
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503 (94g:14021)
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. MR 1658959 (2000b:14018)
- Steven Lu, Yuping Tu, Qi Zhang, and Quan Zheng, On semistability of Albanese maps, Manuscripta Math. 131 (2010), no. 3-4, 531–535. MR 2592095 (2011b:14036), DOI https://doi.org/10.1007/s00229-009-0322-z
- Yoichi Miyaoka, Relative deformations of morphisms and applications to fibre spaces, Comment. Math. Univ. St. Paul. 42 (1993), no. 1, 1–7. MR 1223183 (94i:14009)
- Yu. G. Prokhorov and V. V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), no. 1, 151–199. MR 2448282 (2009i:14007), DOI https://doi.org/10.1090/S1056-3911-08-00498-0
- Qi Zhang, On projective manifolds with nef anticanonical bundles, J. Reine Angew. Math. 478 (1996), 57–60. MR 1409052 (97m:14039), DOI https://doi.org/10.1515/crll.1996.478.57
Additional Information
Caucher Birkar
Affiliation:
Department of Pure Mathematics and Mathematical Statistics (DPMMS), Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
Email:
c.birkar@dpmms.cam.ac.uk
Yifei Chen
Affiliation:
Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, Chinese Academy of Sciences, No. 55 Zhonguancun East Road, Haidian District, Beijing, 100190, People’s Republic of China
Email:
yifeichen@amss.ac.cn
Received by editor(s):
April 14, 2013
Received by editor(s) in revised form:
February 24, 2014
Published electronically:
August 27, 2015
Article copyright:
© Copyright 2015
University Press, Inc.