Regular del Pezzo surfaces with irregularity
Author:
Zachary Maddock
Journal:
J. Algebraic Geom. 25 (2016), 401-429
DOI:
https://doi.org/10.1090/jag/650
Published electronically:
February 24, 2016
MathSciNet review:
3493588
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
We construct the first examples of regular del Pezzo surfaces $X$ for which ℎ¹(𝒪
_{𝒳})>0.
We also find a restriction on the integer pairs that are possible as the anti-canonical degree $K_X^2$ and irregularity $h^1(\mathcal {O}_X)$ of such a surface. Our method of proof is by generalizing results of Ekedahl on foliations to the setting of regular varieties.
References
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091
- Torsten Ekedahl, Foliations and inseparable morphisms, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 139–149. MR 927978, DOI https://doi.org/10.1090/pspum/046.2/927978
- Torsten Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 97–144. MR 972344
- Mikhail M. Grinenko, Birational models of del Pezzo fibrations, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., vol. 338, Cambridge Univ. Press, Cambridge, 2007, pp. 122–157. MR 2306142, DOI https://doi.org/10.1017/CBO9780511721472.005
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- Fumio Hidaka and Keiichi Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. 4 (1981), no. 2, 319–330. MR 646042, DOI https://doi.org/10.3836/tjm/1270215157
- Masayuki Hirokado, Deformations of rational double points and simple elliptic singularities in characteristic $p$, Osaka J. Math. 41 (2004), no. 3, 605–616. MR 2107665
- János Kollár, Extremal rays on smooth threefolds, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 3, 339–361. MR 1100994
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- János Kollár, Nonrational covers of ${\bf C}{\rm P}^m\times {\bf C}{\rm P}^n$, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 51–71. MR 1798980
- Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, DOI https://doi.org/10.2307/2007050
- D. Mumford, Pathologies. III, Amer. J. Math. 89 (1967), 94–104. MR 217091, DOI https://doi.org/10.2307/2373099
- Miles Reid, Nonnormal del Pezzo surfaces, Publ. Res. Inst. Math. Sci. 30 (1994), no. 5, 695–727. MR 1311389, DOI https://doi.org/10.2977/prims/1195165581
- Stefan Schröer, Weak del Pezzo surfaces with irregularity, Tohoku Math. J. (2) 59 (2007), no. 2, 293–322. MR 2347424
- Stefan Schröer, Singularities appearing on generic fibers of morphisms between smooth schemes, Michigan Math. J. 56 (2008), no. 1, 55–76. MR 2433656, DOI https://doi.org/10.1307/mmj/1213972397
References
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902 (2002d:14025)
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091 (2002g:14001)
- Torsten Ekedahl, Foliations and inseparable morphisms, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 139–149. MR 927978 (89d:14049)
- Torsten Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 97–144. MR 972344 (89k:14069)
- Mikhail M. Grinenko, Birational models of del Pezzo fibrations, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., vol. 338, Cambridge Univ. Press, Cambridge, 2007, pp. 122–157. MR 2306142 (2008d:14022), DOI https://doi.org/10.1017/CBO9780511721472.005
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 0173675 (30 \#3885)
- Fumio Hidaka and Keiichi Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. 4 (1981), no. 2, 319–330. MR 646042 (83h:14031), DOI https://doi.org/10.3836/tjm/1270215157
- Masayuki Hirokado, Deformations of rational double points and simple elliptic singularities in characteristic $p$, Osaka J. Math. 41 (2004), no. 3, 605–616. MR 2107665 (2005k:14006)
- János Kollár, Extremal rays on smooth threefolds, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 3, 339–361. MR 1100994 (92f:14034)
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
- János Kollár, Nonrational covers of $\textbf {C}\textrm {P}^m\times \textbf {C}\textrm {P}^n$, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 51–71. MR 1798980 (2001j:14016)
- Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120 (84e:14032), DOI https://doi.org/10.2307/2007050
- D. Mumford, Pathologies. III, Amer. J. Math. 89 (1967), 94–104. MR 0217091 (36 \#182)
- Miles Reid, Nonnormal del Pezzo surfaces, Publ. Res. Inst. Math. Sci. 30 (1994), no. 5, 695–727. MR 1311389 (96a:14042), DOI https://doi.org/10.2977/prims/1195165581
- Stefan Schröer, Weak del Pezzo surfaces with irregularity, Tohoku Math. J. (2) 59 (2007), no. 2, 293–322. MR 2347424 (2008m:14072)
- Stefan Schröer, Singularities appearing on generic fibers of morphisms between smooth schemes, Michigan Math. J. 56 (2008), no. 1, 55–76. MR 2433656 (2009i:14003), DOI https://doi.org/10.1307/mmj/1213972397
Additional Information
Zachary Maddock
Email:
maddockz@gmail.com
Received by editor(s):
November 1, 2012
Received by editor(s) in revised form:
July 20, 2013, and August 8, 2013
Published electronically:
February 24, 2016
Additional Notes:
This work was supported by the NSF through a Graduate Research Fellowship
Article copyright:
© Copyright 2016
University Press, Inc.