Local-global questions for tori over $p$-adic function fields
Authors:
David Harari and Tamás Szamuely
Journal:
J. Algebraic Geom. 25 (2016), 571-605
DOI:
https://doi.org/10.1090/jag/661
Published electronically:
March 31, 2016
MathSciNet review:
3493592
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We study local-global questions for Galois cohomology over the function field of a curve defined over a $p$-adic field (a field of cohomological dimension 3). We define Tate-Shafarevich groups of a commutative group scheme via cohomology classes locally trivial at each completion of the base field coming from a closed point of the curve. In the case of a torus we establish a perfect duality between the first Tate-Shafarevich group of the torus and the second Tate-Shafarevich group of the dual torus. Building upon the duality theorem, we show that the failure of the local-global principle for rational points on principal homogeneous spaces under tori is controlled by a certain subquotient of a third étale cohomology group. We also prove a generalization to principal homogeneous spaces of certain reductive group schemes in the case when the base curve has good reduction.
References
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50. MR 1401491, DOI https://doi.org/10.1090/memo/0626
- Mikhail Borovoi and Joost van Hamel, Extended Picard complexes and linear algebraic groups, J. Reine Angew. Math. 627 (2009), 53–82. MR 2494913, DOI https://doi.org/10.1515/CRELLE.2009.011
- V. I. Chernousov, A remark on the $({\rm mod}\, 5)$-invariant of Serre for groups of type $E_8$, Mat. Zametki 56 (1994), no. 1, 116–121, 157 (Russian, with Russian summary); English transl., Math. Notes 56 (1994), no. 1-2, 730–733 (1995). MR 1309826, DOI https://doi.org/10.1007/BF02110564
- Vladimir Chernousov, On the kernel of the Rost invariant for $E_8$ modulo $3$, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 199–214. MR 2648726, DOI https://doi.org/10.1007/978-1-4419-6211-9_11
- Jean-Louis Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math. 618 (2008), 77–133 (French). MR 2404747, DOI https://doi.org/10.1515/CRELLE.2008.034
- J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. MR 2034644, DOI https://doi.org/10.1215/S0012-7094-04-12124-4
- Jean-Louis Colliot-Thélène, Raman Parimala, and Venapally Suresh, Patching and local-global principles for homogeneous spaces over function fields of $p$-adic curves, Comment. Math. Helv. 87 (2012), no. 4, 1011–1033. MR 2984579, DOI https://doi.org/10.4171/CMH/276
- J.-L. Colliot-Thélène, R. Parimala, and V. Suresh, Lois de réciprocité supérieures et points rationnels, Trans. Amer. Math. Soc. 368 (2016), no. 6, 4219–4255 (French, with English and French summaries). MR 3453370, DOI https://doi.org/10.1090/S0002-9947-2015-06519-2
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI https://doi.org/10.1215/S0012-7094-87-05420-2
- Thomas Geisser, Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095–1126. MR 2680487, DOI https://doi.org/10.4007/annals.2010.172.1095
- Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55–103. MR 1807268, DOI https://doi.org/10.1515/crll.2001.006
- Marvin J. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 59–64. MR 207700
- David Harari, Claus Scheiderer, and Tamás Szamuely, Weak approximation for tori over $p$-adic function fields, Int. Math. Res. Not. IMRN 10 (2015), 2751–2783. MR 3352255, DOI https://doi.org/10.1093/imrn/rnu019
- David Harari and Tamás Szamuely, Arithmetic duality theorems for 1-motives, J. Reine Angew. Math. 578 (2005), 93–128. MR 2113891, DOI https://doi.org/10.1515/crll.2005.2005.578.93
- David Harari and Tamás Szamuely, Local-global principles for 1-motives, Duke Math. J. 143 (2008), no. 3, 531–557. MR 2423762, DOI https://doi.org/10.1215/00127094-2008-028
- David Harbater, Julia Hartmann, and Daniel Krashen, Local-global principles for torsors over arithmetic curves, Amer. J. Math. 137 (2015), no. 6, 1559–1612. MR 3432268, DOI https://doi.org/10.1353/ajm.2015.0039
- Günter Harder, Halbeinfache Gruppenschemata über vollständigen Kurven, Invent. Math. 6 (1968), 107–149 (German). MR 263826, DOI https://doi.org/10.1007/BF01425451
- Yong Hu, Hasse principle for simply connected groups over function fields of surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155–199. MR 3237731
- Bruno Kahn, Classes de cycles motiviques étales, Algebra Number Theory 6 (2012), no. 7, 1369–1407 (French, with English and French summaries). MR 3007153, DOI https://doi.org/10.2140/ant.2012.6.1369
- Kazuya Kato, A generalization of local class field theory by using $K$-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683. MR 603953
- Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366 (1986), 142–183. With an appendix by Jean-Louis Colliot-Thélène. MR 833016, DOI https://doi.org/10.1515/crll.1986.366.142
- Martin Kneser, Starke Approximation in algebraischen Gruppen. I, J. Reine Angew. Math. 218 (1965), 190–203 (German). MR 184945, DOI https://doi.org/10.1515/crll.1965.218.190
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779
- Stephen Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120–136. MR 242831, DOI https://doi.org/10.1007/BF01389795
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- R. Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $cd_2(k)\leq 3$, J. Algebra 385 (2013), 294–313. MR 3049572, DOI https://doi.org/10.1016/j.jalgebra.2013.02.038
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI https://doi.org/10.1515/crll.1981.327.12
- Claus Scheiderer and Joost van Hamel, Cohomology of tori over $p$-adic curves, Math. Ann. 326 (2003), no. 1, 155–183. MR 1981617, DOI https://doi.org/10.1007/s00208-003-0416-y
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577
- Nikita Semenov, Motivic construction of cohomological invariants, Comment. Math. Helv. 91 (2016), no. 1, 163–202. MR 3471941, DOI https://doi.org/10.4171/CMH/382
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713
- Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945
- Burt Totaro, Milnor $K$-theory is the simplest part of algebraic $K$-theory, $K$-Theory 6 (1992), no. 2, 177–189. MR 1187705, DOI https://doi.org/10.1007/BF01771011
- V. E. Voskresenskiĭ, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 3–19 (Russian). MR 0262251
References
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815 (88f:18010), DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50. MR 1401491 (98j:20061), DOI https://doi.org/10.1090/memo/0626
- Mikhail Borovoi and Joost van Hamel, Extended Picard complexes and linear algebraic groups, J. Reine Angew. Math. 627 (2009), 53–82. MR 2494913 (2010b:14041), DOI https://doi.org/10.1515/CRELLE.2009.011
- V. I. Chernousov, A remark on the $(\textrm {mod} 5)$-invariant of Serre for groups of type $E_8$, Mat. Zametki 56 (1994), no. 1, 116–121, 157 (Russian, with Russian summary); English transl., Math. Notes 56 (1994), no. 1-2, 730–733 (1995). MR 1309826 (95i:20072), DOI https://doi.org/10.1007/BF02110564
- Vladimir Chernousov, On the kernel of the Rost invariant for $E_8$ modulo $3$, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 199–214. MR 2648726, DOI https://doi.org/10.1007/978-1-4419-6211-9_11
- Jean-Louis Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math. 618 (2008), 77–133 (French). MR 2404747 (2009a:11091), DOI https://doi.org/10.1515/CRELLE.2008.034
- J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. MR 2034644 (2005f:11063), DOI https://doi.org/10.1215/S0012-7094-04-12124-4
- Jean-Louis Colliot-Thélène, Raman Parimala, and Venapally Suresh, Patching and local-global principles for homogeneous spaces over function fields of $p$-adic curves, Comment. Math. Helv. 87 (2012), no. 4, 1011–1033. MR 2984579, DOI https://doi.org/10.4171/CMH/276
- J.-L. Colliot-Thélène, R. Parimala, and V. Suresh, Lois de réciprocité supérieures et points rationnels, Trans. Amer. Math. Soc. 368 (2016), no. 6, 4219–4255. MR 3453370, DOI https://doi.org/10.1090/tran/6519
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 0450280 (56 \#8576)
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402 (89f:11082), DOI https://doi.org/10.1215/S0012-7094-87-05420-2
- Thomas Geisser, Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095–1126. MR 2680487 (2012a:19009), DOI https://doi.org/10.4007/annals.2010.172.1095
- Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55–103. MR 1807268 (2003a:14031), DOI https://doi.org/10.1515/crll.2001.006
- Marvin J. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 59–64. MR 0207700 (34 \#7515)
- David Harari, Claus Scheiderer, and Tamás Szamuely, Weak approximation for tori over $p$-adic function fields, Int. Math. Res. Not. IMRN 10 (2015), 2751–2783. MR 3352255, DOI https://doi.org/10.1093/imrn/rnu019
- David Harari and Tamás Szamuely, Arithmetic duality theorems for 1-motives, J. Reine Angew. Math. 578 (2005), 93–128. MR 2113891 (2006f:14053), DOI https://doi.org/10.1515/crll.2005.2005.578.93
- David Harari and Tamás Szamuely, Local-global principles for 1-motives, Duke Math. J. 143 (2008), no. 3, 531–557. MR 2423762 (2009i:14026), DOI https://doi.org/10.1215/00127094-2008-028
- David Harbater, Julia Hartmann, and Daniel Krashen, Local-global principles for torsors over arithmetic curves, Amer. J. Math. 137 (2015), no. 6, 1559–1612. MR 3432268, DOI https://doi.org/10.1353/ajm.2015.0039
- Günter Harder, Halbeinfache Gruppenschemata über vollständigen Kurven, Invent. Math. 6 (1968), 107–149 (German). MR 0263826 (41 \#8425)
- Yong Hu, Hasse principle for simply connected groups over function fields of surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155–199. MR 3237731
- Bruno Kahn, Classes de cycles motiviques étales, Algebra Number Theory 6 (2012), no. 7, 1369–1407 (French, with English and French summaries). MR 3007153, DOI https://doi.org/10.2140/ant.2012.6.1369
- Kazuya Kato, A generalization of local class field theory by using $K$-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683. MR 603953 (83g:12020a)
- Kazuya Kato, A Hasse principle for two-dimensional global fields, with an appendix by Jean-Louis Colliot-Thélène, J. Reine Angew. Math. 366 (1986), 142–183. MR 833016 (88b:11036), DOI https://doi.org/10.1515/crll.1986.366.142
- Martin Kneser, Starke Approximation in algebraischen Gruppen. I, J. Reine Angew. Math. 218 (1965), 190–203 (German). MR 0184945 (32 \#2416)
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, with a preface in French by J. Tits, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. MR 1632779 (2000a:16031)
- Stephen Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120–136. MR 0242831 (39 \#4158)
- James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804 (88e:14028)
- J. S. Milne and K.-y. Shih, Conjugates of Shimura varieties, in P. Deligne at al. Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math. vol. 900, Springer-Verlag, 1982, pp. 280–356. MR 654325 (84m:14046)
- R. Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $cd_2(k)\leq 3$, J. Algebra 385 (2013), 294–313. MR 3049572, DOI https://doi.org/10.1016/j.jalgebra.2013.02.038
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309 (83d:12010), DOI https://doi.org/10.1515/crll.1981.327.12
- Claus Scheiderer and Joost van Hamel, Cohomology of tori over $p$-adic curves, Math. Ann. 326 (2003), no. 1, 155–183. MR 1981617 (2004m:14041), DOI https://doi.org/10.1007/s00208-003-0416-y
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577 (96b:12010)
- Nikita Semenov, Motivic construction of cohomological invariants, Comment. Math. Helv. 91 (2016), no. 1, 163–202. MR 3471941, DOI https://doi.org/10.4171/CMH/382
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760 (2002d:14032)
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713 (99h:20075)
- Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945 (2001g:14031)
- Burt Totaro, Milnor $K$-theory is the simplest part of algebraic $K$-theory, $K$-Theory 6 (1992), no. 2, 177–189. MR 1187705 (94d:19009), DOI https://doi.org/10.1007/BF01771011
- V. E. Voskresenskiĭ, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 3–19 (Russian). MR 0262251 (41 \#6861)
Additional Information
David Harari
Affiliation:
Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
Email:
David.Harari@math.u-psud.fr
Tamás Szamuely
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13–15, H-1053 Budapest, Hungary – and – Central European University, Nádor utca 9, H-1051 Budapest, Hungary
Email:
szamuely.tamas@renyi.mta.hu
Received by editor(s):
October 4, 2013
Received by editor(s) in revised form:
February 26, 2014
Published electronically:
March 31, 2016
Article copyright:
© Copyright 2016
University Press, Inc.