Symmetric cubic surfaces and $\mathbf {G}_2$ character varieties
Authors:
Philip Boalch and Robert Paluba
Journal:
J. Algebraic Geom. 25 (2016), 607-631
DOI:
https://doi.org/10.1090/jag/668
Published electronically:
April 6, 2016
MathSciNet review:
3533182
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We will consider a two dimensional “symmetric” subfamily of the four dimensional family of Fricke cubic surfaces. The main result is that such symmetric cubic surfaces arise as character varieties for the exceptional group of type $G_2$. Further, this symmetric family will be related to the fixed points of the triality automorphism of $\operatorname {Spin}(8)$, and an example involving the finite simple group of order $6048$ inside $G_2$ will be considered.
References
- D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of ${\rm SL}(2)$-bundles with connections on ${\bf P}^1_s \{x_1,\cdots , x_4\}$, Math. Res. Lett. 4 (1997), no. 2-3, 181–190. MR 1453052, DOI https://doi.org/10.4310/MRL.1997.v4.n2.a1
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI https://doi.org/10.1098/rsta.1983.0017
- Michèle Audin, Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry (Montreal, PQ, 1995) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 488, Kluwer Acad. Publ., Dordrecht, 1997, pp. 1–48. MR 1461568
- John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087, DOI https://doi.org/10.1090/S0273-0979-01-00934-X
- Anne Boutet de Monvel and Vladimir Marchenko (eds.), Algebraic and geometric methods in mathematical physics, Mathematical Physics Studies, vol. 19, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1385673
- Philip Boalch, Painlevé equations and complex reflections, Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002), 2003, pp. 1009–1022 (English, with English and French summaries). MR 2033508
- Philip Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), no. 1, 167–208. MR 2107041, DOI https://doi.org/10.1112/S0024611504015011
- Philip Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006), 183–214. MR 2254812, DOI https://doi.org/10.1515/CRELLE.2006.059
- Philip Boalch, Six results on Painlevé VI, Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14, Soc. Math. France, Paris, 2006, pp. 1–20 (English, with English and French summaries). MR 2349685
- Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., vol. 9, Eur. Math. Soc., Zürich, 2007, pp. 85–112. MR 2322328
- P. P. Boalch, Irregular connections and Kac–Moody root systems, 2008, arXiv:math/ 0806.1050.
- P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), no. 1, 27–50. MR 2785493, DOI https://doi.org/10.1007/s00031-011-9121-1
- P. P. Boalch, Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves, 2012, text of talk at Institut Henri Poincaré, arXiv:1203.6607.
- Philip Boalch, Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 1–68. MR 3090254, DOI https://doi.org/10.1007/s10240-012-0044-8
- John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. MR 1957212
- William Crawley-Boevey and Peter Shaw, Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem, Adv. Math. 201 (2006), no. 1, 180–208. MR 2204754, DOI https://doi.org/10.1016/j.aim.2005.02.003
- Robert Fricke and Felix Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bande 3, vol. 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttg art, 1965 (German). MR 0183872
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
- William M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557–607. MR 952283, DOI https://doi.org/10.1007/BF01410200
- Robert L. Griess Jr., Basic conjugacy theorems for $G_2$, Invent. Math. 121 (1995), no. 2, 257–277. MR 1346206, DOI https://doi.org/10.1007/BF01884298
- N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), no. 1, 30–112. MR 1350695
- Nigel Hitchin, Langlands duality and $G_2$ spectral curves, Q. J. Math. 58 (2007), no. 3, 319–344. MR 2354922, DOI https://doi.org/10.1093/qmath/ham016
- Katsunori Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 131–135. MR 1930217
- V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 94–96 (Russian). MR 0251091
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683. MR 992334
- Martin Lorenz, Multiplicative invariant theory, Encyclopaedia of Mathematical Sciences, vol. 135, Springer-Verlag, Berlin, 2005. Invariant Theory and Algebraic Transformation Groups, VI. MR 2131760
- Wilhelm Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980), no. 1, 91–103. MR 558891, DOI https://doi.org/10.1007/BF01214715
- Yu. I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbf P^2$, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 186, Amer. Math. Soc., Providence, RI, 1998, pp. 131–151. MR 1732409, DOI https://doi.org/10.1090/trans2/186/04
- Isao Naruki, Cross ratio variety as a moduli space of cubic surfaces, Proc. London Math. Soc. (3) 45 (1982), no. 1, 1–30. With an appendix by Eduard Looijenga. MR 662660, DOI https://doi.org/10.1112/plms/s3-45.1.1
- Alexei Oblomkov, Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not. 18 (2004), 877–912. MR 2037756, DOI https://doi.org/10.1155/S1073792804133072
- Kazuo Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$, Ann. Mat. Pura Appl. (4) 146 (1987), 337–381. MR 916698, DOI https://doi.org/10.1007/BF01762370
- Gerald W. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), no. 2, 167–191. MR 511189, DOI https://doi.org/10.1007/BF01403085
- Gerald W. Schwarz, Invariant theory of $G_{2}$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 3, 335–338. MR 714998, DOI https://doi.org/10.1090/S0273-0979-1983-15197-2
- J.-P. Serre, Coordinées de Kac, http://www.college-de-france.fr/site/historique/essai.htm, 2006.
- H. Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. École Norm. Sup. (3) 6 (1889), 3–71 (French). MR 1508833
- Daisuke Yamakawa, Geometry of multiplicative preprojective algebra, Int. Math. Res. Pap. IMRP (2008), Art. ID rpn008, 77pp. MR 2470573
References
- D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of $\textrm {SL}(2)$-bundles with connections on $\textbf {P}^1\backslash \{x_1,\cdots , x_4\}$, Math. Res. Lett. 4 (1997), no. 2-3, 181–190. MR 1453052 (98h:14012), DOI https://doi.org/10.4310/MRL.1997.v4.n2.a1
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806 (85k:14006), DOI https://doi.org/10.1098/rsta.1983.0017
- M. Audin, Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry (Montreal, PQ, 1995) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 488, Kluwer Acad. Publ., Dordrecht, 1997, pp. 1–48. MR 1461568
- J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087 (2003f:17003), DOI https://doi.org/10.1090/S0273-0979-01-00934-X
- A. Beilinson and V. Drinfeld, Quantisation of Hitchin’s fibration and Langlands program, Algebraic and Geometric methods in Mathematical Physics (A. Boutet de Monvel and V.A. Marchenko, eds.), Math. Phys. Studies, vol. 19, Kluwer Acad. Publ., Netherlands, 1996. MR 1385673 (96m:00015)
- P. P. Boalch, Painlevé equations and complex reflections, Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002), 2003, pp. 1009–1022 (English, with English and French summaries). MR 2033508 (2005a:34128)
- P. P. Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), no. 1, 167–208. MR 2107041, DOI https://doi.org/10.1112/S0024611504015011
- P. P. Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006), 183–214. MR 2254812 (2007i:34149), DOI https://doi.org/10.1515/CRELLE.2006.059
- P. P. Boalch, Six results on Painlevé VI, Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14, Soc. Math. France, Paris, 2006, pp. 1–20 (English, with English and French summaries). MR 2349685
- P. P. Boalch, Some explicit solutions to the Riemann-Hilbert problem, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., vol. 9, Eur. Math. Soc., Zürich, 2007, pp. 85–112. MR 2322328
- P. P. Boalch, Irregular connections and Kac–Moody root systems, 2008, arXiv:math/ 0806.1050.
- P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), no. 1, 27–50. MR 2785493 (2012m:14020), DOI https://doi.org/10.1007/s00031-011-9121-1
- P. P. Boalch, Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves, 2012, text of talk at Institut Henri Poincaré, arXiv:1203.6607.
- P. P. Boalch, Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 1–68. MR 3090254, DOI https://doi.org/10.1007/s10240-012-0044-8
- J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. MR 1957212 (2004a:17002)
- W. Crawley-Boevey and P. Shaw, Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem, Adv. Math. 201 (2006), no. 1, 180–208. MR 2204754 (2006m:16015), DOI https://doi.org/10.1016/j.aim.2005.02.003
- R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bände 3, vol. 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1965 (German). MR 0183872
- W. Fulton and J. Harris, Representation theory, A first course, Readings in Mathematics, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249 (93a:20069)
- W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557–607. MR 952283 (89m:57001), DOI https://doi.org/10.1007/BF01410200
- R. L. Griess Jr., Basic conjugacy theorems for $G_2$, Invent. Math. 121 (1995), no. 2, 257–277. MR 1346206 (96f:20065), DOI https://doi.org/10.1007/BF01884298
- N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), no. 1, 30–112. MR 1350695 (96g:53057)
- N. J. Hitchin, Langlands duality and $G_2$ spectral curves, Q. J. Math. 58 (2007), no. 3, 319–344. MR 2354922 (2008j:14065), DOI https://doi.org/10.1093/qmath/ham016
- K. Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 131–135. MR 1930217 (2003h:34187)
- V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), 94–96. MR 0251091
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683. MR 992334 (90d:53055)
- M. Lorenz, Multiplicative invariant theory, Invariant Theory and Algebraic Transformation Groups, VI. Encyclopaedia of Mathematical Sciences, vol. 135, Springer-Verlag, Berlin, 2005. MR 2131760 (2005m:13012)
- W. Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980), no. 1, 91–103. MR 558891 (81a:20043), DOI https://doi.org/10.1007/BF01214715
- Yu. I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbf {P}^2$, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 186, Amer. Math. Soc., Providence, RI, 1998, pp. 131–151. MR 1732409 (2001b:14086)
- I. Naruki, Cross ratio variety as a moduli space of cubic surfaces, with an appendix by Eduard Looijenga, Proc. London Math. Soc. (3) 45 (1982), no. 1, 1–30. MR 662660 (84d:14020), DOI https://doi.org/10.1112/plms/s3-45.1.1
- A. Oblomkov, Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not. 18 (2004), 877–912. MR 2037756 (2005j:20005), DOI https://doi.org/10.1155/S1073792804133072
- K. Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{\textrm {VI}}$, Ann. Mat. Pura Appl. (4) 146 (1987), 337–381. MR 916698 (88m:58062), DOI https://doi.org/10.1007/BF01762370
- G. W. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), no. 2, 167–191. MR 511189 (80m:14032), DOI https://doi.org/10.1007/BF01403085
- G. W. Schwarz, Invariant theory of $G_{2}$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 3, 335–338. MR 714998 (85c:20031), DOI https://doi.org/10.1090/S0273-0979-1983-15197-2
- J.-P. Serre, Coordinées de Kac, http://www.college-de-france.fr/site/historique/essai.htm, 2006.
- H. Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. École Norm. Sup. (3) 6 (1889), 3–71 (French). MR 1508833
- D. Yamakawa, Geometry of multiplicative preprojective algebra, Int. Math. Res. Pap. IMRP (2008), Art. ID rpn008, 77 pp. MR 2470573 (2010e:16028)
Additional Information
Philip Boalch
Affiliation:
Laboratoire de Mathématiques d’Orsay (CNRS UMR 8628), Bâtiment 425, Université Paris-Sud, 91405 Orsay, France
MR Author ID:
686227
Email:
philip.boalch@math.u-psud.fr
Robert Paluba
Affiliation:
Laboratoire de Mathématiques d’Orsay (CNRS UMR 8628), Bâtiment 425, Université Paris-Sud, 91405 Orsay, France
Email:
robert.paluba@math.u-psud.fr
Received by editor(s):
June 2, 2013
Received by editor(s) in revised form:
July 9, 2014, and September 27, 2014
Published electronically:
April 6, 2016
Additional Notes:
The first-named author was partially supported by ANR grants 08-BLAN-0317-01/02, 09-JCJC-0102-01, 13-BS01-0001-01, and 13-IS01-0001-01/02
Article copyright:
© Copyright 2016
University Press, Inc.