Simplicial Abel-Jacobi maps and reciprocity laws
Authors:
Matt Kerr, James Lewis and Patrick Lopatto; With an Appendix by José Ignacio Burgos-Gil
Journal:
J. Algebraic Geom. 27 (2018), 121-172
DOI:
https://doi.org/10.1090/jag/692
Published electronically:
July 21, 2017
MathSciNet review:
3722692
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We describe an explicit morphism of complexes that induces the cycle-class maps from (simplicially described) higher Chow groups to rational Deligne cohomology. The reciprocity laws satisfied by the currents we introduce for this purpose are shown to provide a clarifying perspective on functional equations satisfied by complex-valued di- and trilogarithms.
References
- Spencer Bloch, Matt Kerr, and Pierre Vanhove, A Feynman integral via higher normal functions, Compos. Math. 151 (2015), no. 12, 2329–2375. MR 3433889, DOI https://doi.org/10.1112/S0010437X15007472
- José Ignacio Burgos Gil, Elisenda Feliu, and Yuichiro Takeda, On Goncharov’s regulator and higher arithmetic Chow groups, Int. Math. Res. Not. IMRN 1 (2011), 40–73. MR 2755482, DOI https://doi.org/10.1093/imrn/rnq066
- Jose Ignacio Burgos, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom. 6 (1997), no. 2, 335–377. MR 1489119
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI https://doi.org/10.1017/S1474748007000011
- Rob De Jeu, A remark on the rank conjecture, $K$-Theory 25 (2002), no. 3, 215–231. MR 1909867, DOI https://doi.org/10.1023/A%3A1015656301533
- Charles F. Doran and Matt Kerr, Algebraic $K$-theory of toric hypersurfaces, Commun. Number Theory Phys. 5 (2011), no. 2, 397–600. MR 2851155, DOI https://doi.org/10.4310/CNTP.2011.v5.n2.a3
- Elisenda Feliu, On uniqueness of characteristic classes, J. Pure Appl. Algebra 215 (2011), no. 6, 1223–1242. MR 2769228, DOI https://doi.org/10.1016/j.jpaa.2010.08.006
- A. B. Goncharov, Chow polylogarithms and regulators, Math. Res. Lett. 2 (1995), no. 1, 95–112. MR 1312980, DOI https://doi.org/10.4310/MRL.1995.v2.n1.a9
- A. B. Goncharov, Polylogarithms, regulators, and Arakelov motivic complexes, J. Amer. Math. Soc. 18 (2005), no. 1, 1–60. MR 2114816, DOI https://doi.org/10.1090/S0894-0347-04-00472-2
- A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), no. 2, 197–318. MR 1348706, DOI https://doi.org/10.1006/aima.1995.1045
- A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43–96. MR 1265551
- Mark Green, Phillip Griffiths, and Matt Kerr, Néron models and limits of Abel-Jacobi mappings, Compos. Math. 146 (2010), no. 2, 288–366. MR 2601630, DOI https://doi.org/10.1112/S0010437X09004400
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541. MR 0260733, DOI https://doi.org/10.2307/1970746
- Alain Hénaut, Analytic web geometry, Web theory and related topics (Toulouse, 1996) World Sci. Publ., River Edge, NJ, 2001, pp. 6–47. MR 1837882, DOI https://doi.org/10.1142/9789812794581_0002
- Ivan Horozov, Reciprocity laws on algebraic surfaces via iterated integrals, J. K-Theory 14 (2014), no. 2, 273–312. With an appendix by Horozov and Matt Kerr. MR 3264264, DOI https://doi.org/10.1017/is014006014jkt271
- Matthew David Kerr, Geometric construction of regulator currents with applications to algebraic cycles, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Princeton University. MR 2704216
- Matt Kerr, A regulator formula for Milnor $K$-groups, $K$-Theory 29 (2003), no. 3, 175–210. MR 2028501, DOI https://doi.org/10.1023/B%3AKTHE.0000006920.60109.e8
- Matt Kerr, An elementary proof of Suslin reciprocity, Canad. Math. Bull. 48 (2005), no. 2, 221–236. MR 2137100, DOI https://doi.org/10.4153/CMB-2005-020-x
- Matt Kerr and James D. Lewis, The Abel-Jacobi map for higher Chow groups. II, Invent. Math. 170 (2007), no. 2, 355–420. MR 2342640, DOI https://doi.org/10.1007/s00222-007-0066-x
- Matt Kerr, James D. Lewis, and Stefan Müller-Stach, The Abel-Jacobi map for higher Chow groups, Compos. Math. 142 (2006), no. 2, 374–396. MR 2218900, DOI https://doi.org/10.1112/S0010437X05001867
- Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR 618278
- Marc Levine, Bloch’s higher Chow groups revisited, Astérisque 226 (1994), 10, 235–320. $K$-theory (Strasbourg, 1992). MR 1317122
- Fabien Morel and Vladimir Voevodsky, ${\bf A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224
- Oliver Petras, Functional equations of the dilogarithm in motivic cohomology, J. Number Theory 129 (2009), no. 10, 2346–2368. MR 2541021, DOI https://doi.org/10.1016/j.jnt.2009.04.009
- Luc Pirio, Abelian functional equations, planar web geometry and polylogarithms, Selecta Math. (N.S.) 11 (2005), no. 3-4, 453–489. MR 2215261, DOI https://doi.org/10.1007/s00029-005-0012-y
- Xuesung Wang, Higher-order characteristic classes in arithmetic geometry, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–Harvard University. MR 2687725
References
- Spencer Bloch, Matt Kerr, and Pierre Vanhove, A Feynman integral via higher normal functions, Compos. Math. 151 (2015), no. 12, 2329–2375. MR 3433889, DOI https://doi.org/10.1112/S0010437X15007472
- José Ignacio Burgos Gil, Elisenda Feliu, and Yuichiro Takeda, On Goncharov’s regulator and higher arithmetic Chow groups, Int. Math. Res. Not. IMRN 1 (2011), 40–73. MR 2755482
- Jose Ignacio Burgos, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom. 6 (1997), no. 2, 335–377. MR 1489119
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI https://doi.org/10.1017/S1474748007000011
- Rob De Jeu, A remark on the rank conjecture, $K$-Theory 25 (2002), no. 3, 215–231. MR 1909867, DOI https://doi.org/10.1023/A%3A1015656301533
- Charles F. Doran and Matt Kerr, Algebraic $K$-theory of toric hypersurfaces, Commun. Number Theory Phys. 5 (2011), no. 2, 397–600. MR 2851155, DOI https://doi.org/10.4310/CNTP.2011.v5.n2.a3
- Elisenda Feliu, On uniqueness of characteristic classes, J. Pure Appl. Algebra 215 (2011), no. 6, 1223–1242. MR 2769228, DOI https://doi.org/10.1016/j.jpaa.2010.08.006
- A. B. Goncharov, Chow polylogarithms and regulators, Math. Res. Lett. 2 (1995), no. 1, 95–112. MR 1312980, DOI https://doi.org/10.4310/MRL.1995.v2.n1.a9
- A. B. Goncharov, Polylogarithms, regulators, and Arakelov motivic complexes, J. Amer. Math. Soc. 18 (2005), no. 1, 1–60 (electronic). MR 2114816, DOI https://doi.org/10.1090/S0894-0347-04-00472-2
- A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), no. 2, 197–318. MR 1348706, DOI https://doi.org/10.1006/aima.1995.1045
- A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43–96. MR 1265551
- Mark Green, Phillip Griffiths, and Matt Kerr, Néron models and limits of Abel-Jacobi mappings, Compos. Math. 146 (2010), no. 2, 288–366. MR 2601630, DOI https://doi.org/10.1112/S0010437X09004400
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541. MR 0260733
- Alain Hénaut, Analytic web geometry, Web theory and related topics (Toulouse, 1996) World Sci. Publ., River Edge, NJ, 2001, pp. 6–47. MR 1837882, DOI https://doi.org/10.1142/9789812794581_0002
- Ivan Horozov, Reciprocity laws on algebraic surfaces via iterated integrals, with an appendix by Horozov and Matt Kerr, J. K-Theory 14 (2014), no. 2, 273–312. MR 3264264, DOI https://doi.org/10.1017/is014006014jkt271
- Matthew David Kerr, Geometric construction of regulator currents with applications to algebraic cycles, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Princeton University, 2003. MR 2704216
- Matt Kerr, A regulator formula for Milnor $K$-groups, $K$-Theory 29 (2003), no. 3, 175–210. MR 2028501, DOI https://doi.org/10.1023/B%3AKTHE.0000006920.60109.e8
- Matt Kerr, An elementary proof of Suslin reciprocity, Canad. Math. Bull. 48 (2005), no. 2, 221–236. MR 2137100, DOI https://doi.org/10.4153/CMB-2005-020-x
- Matt Kerr and James D. Lewis, The Abel-Jacobi map for higher Chow groups. II, Invent. Math. 170 (2007), no. 2, 355–420. MR 2342640, DOI https://doi.org/10.1007/s00222-007-0066-x
- Matt Kerr, James D. Lewis, and Stefan Müller-Stach, The Abel-Jacobi map for higher Chow groups, Compos. Math. 142 (2006), no. 2, 374–396. MR 2218900, DOI https://doi.org/10.1112/S0010437X05001867
- Leonard Lewin, Polylogarithms and associated functions, with a foreword by A. J. Van der Poorten, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 618278
- Marc Levine, Bloch’s higher Chow groups revisited, Astérisque 226 (1994), 10, 235–320. $K$-theory (Strasbourg, 1992). MR 1317122
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224
- Oliver Petras, Functional equations of the dilogarithm in motivic cohomology, J. Number Theory 129 (2009), no. 10, 2346–2368. MR 2541021, DOI https://doi.org/10.1016/j.jnt.2009.04.009
- Luc Pirio, Abelian functional equations, planar web geometry and polylogarithms, Selecta Math. (N.S.) 11 (2005), no. 3-4, 453–489. MR 2215261, DOI https://doi.org/10.1007/s00029-005-0012-y
- Xuesung Wang, Higher-order characteristic classes in arithmetic geometry, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Harvard University, 1992. MR 2687725
Additional Information
Matt Kerr
Affiliation:
Department of Mathematics, Campus Box 1146, Washington University in St. Louis, St. Louis, Missouri 63130
MR Author ID:
727150
Email:
matkerr@math.wustl.edu
James Lewis
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
MR Author ID:
204180
Email:
lewisjd@ualberta.ca
Patrick Lopatto
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
MR Author ID:
931970
Email:
patricklopatto@gmail.com
José Ignacio Burgos-Gil
Affiliation:
Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UCM3), Calle Nicolás Cabrera 15, Campus UAB, Cantoblanco, 28049 Madrid, Spain
MR Author ID:
349969
Email:
burgos@icmat.es
Received by editor(s):
November 25, 2015
Received by editor(s) in revised form:
May 2, 2016
Published electronically:
July 21, 2017
Article copyright:
© Copyright 2017
University Press, Inc.