Positivity of twisted relative pluricanonical bundles and their direct images
Authors:
Mihai Păun and Shigeharu Takayama
Journal:
J. Algebraic Geom. 27 (2018), 211-272
DOI:
https://doi.org/10.1090/jag/702
Published electronically:
December 15, 2017
MathSciNet review:
3764276
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Our main goal in this article is to establish a metric version of the positivity properties of twisted relative pluricanonical bundles and their direct images. Some of the important technical points of our proof are an $L^{2/m}$-extension theorem of Ohsawa-Takegoshi type which is derived from the original result by a simple fixed point method and the notion of “singular Hermitian metric” on vector bundles, together with an appropriate definition of positivity of the associated curvature. Part of this article is based on the joint work of the first-named author with Bo Berndtsson, and it can be seen as an expanded and updated version of it.
References
- Bo Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531–560. MR 2480611, DOI https://doi.org/10.4007/annals.2009.169.531
- Bo Berndtsson, An introduction to things $\overline \partial $, Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Amer. Math. Soc., Providence, RI, 2010, pp. 7–76. MR 2743815, DOI https://doi.org/10.1090/pcms/017/02
- Bo Berndtsson and Mihai Păun, Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J. 145 (2008), no. 2, 341–378. MR 2449950, DOI https://doi.org/10.1215/00127094-2008-054
- B. Berndtsson and M. Păun, Bergman kernels and subadjunction, arXiv:1002.4145v1 [math.AG].
- Bo Berndtsson and Mihai Păun, Quantitative extensions of pluricanonical forms and closed positive currents, Nagoya Math. J. 205 (2012), 25–65. MR 2891164, DOI https://doi.org/10.1215/00277630-1543778
- Zbigniew Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), no. 1, 149–158. MR 3069114, DOI https://doi.org/10.1007/s00222-012-0423-2
- Frédéric Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 499–630 (English, with English and French summaries). MR 2097416
- J. Cao, Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and applications, arXiv:1404.6937v1 [mathAG].
- Junyan Cao and Mihai Păun, Kodaira dimension of algebraic fiber spaces over abelian varieties, Invent. Math. 207 (2017), no. 1, 345–387. MR 3592759, DOI https://doi.org/10.1007/s00222-016-0672-6
- Mark Andrea A. de Cataldo, Singular Hermitian metrics on vector bundles, J. Reine Angew. Math. 502 (1998), 93–122. MR 1647555, DOI https://doi.org/10.1515/crll.1998.091
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial $ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409. MR 1158622
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Structure theorems for projective and Kähler varieties, Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Amer. Math. Soc., Providence, RI, 2010, pp. 295–370. MR 2743818, DOI https://doi.org/10.1090/pcms/017/05
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Jean-Pierre Demailly, On the cohomology of pseudoeffective line bundles, Complex geometry and dynamics, Abel Symp., vol. 10, Springer, Cham, 2015, pp. 51–99. MR 3587462
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI https://doi.org/10.1142/S0129167X01000861
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1701–1734 (English, with English and French summaries). MR 2282673
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), no. 3, 607–651. MR 2530849, DOI https://doi.org/10.1353/ajm.0.0054
- Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
- Osamu Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), no. 3, 453–479. MR 2106473
- Osamu Fujino, Corrigendum: Direct images of relative pluricanonical bundles (Algebraic Geometry 3, no. 1, (2016), 50–62) [ MR3455420], Algebr. Geom. 3 (2016), no. 2, 261–263. MR 3477956, DOI https://doi.org/10.14231/AG-2016-012
- Takao Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), no. 4, 779–794. MR 513085, DOI https://doi.org/10.2969/jmsj/03040779
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 282990
- Qi’an Guan and Xiangyu Zhou, A solution of an $L^2$ extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208. MR 3296822, DOI https://doi.org/10.4007/annals.2015.181.3.6
- Ch. Hacon, M. Popa and Ch. Schnell, Algebraic fibers spaces over abelian varieties: around a recent theorem by Cao and Păun, arXiv:1611.08768 [mathAG].
- Andreas Höring, Positivity of direct image sheaves—a geometric point of view, Enseign. Math. (2) 56 (2010), no. 1-2, 87–142. MR 2674856, DOI https://doi.org/10.4171/LEM/56-1-4
- Yujiro Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), no. 1, 57–71. MR 652646, DOI https://doi.org/10.1007/BF01404756
- Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893–899. MR 1646046
- Yujiro Kawamata, On algebraic fiber spaces, Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000) Nankai Tracts Math., vol. 5, World Sci. Publ., River Edge, NJ, 2002, pp. 135–154. MR 1945358, DOI https://doi.org/10.1142/9789812777416_0006
- Yujiro Kawamata, Semipositivity theorem for reducible algebraic fiber spaces, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1427–1447. MR 2918168, DOI https://doi.org/10.4310/PAMQ.2011.v7.n4.a16
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- János Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202. MR 847955, DOI https://doi.org/10.2307/1971390
- János Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 134–162. MR 2359346, DOI https://doi.org/10.1093/acprof%3Aoso/9780198570615.003.0008
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472
- Christophe Mourougane and Shigeharu Takayama, Hodge metrics and the curvature of higher direct images, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 6, 905–924 (English, with English and French summaries). MR 2504108, DOI https://doi.org/10.24033/asens.2084
- Christophe Mourougane and Shigeharu Takayama, Extension of twisted Hodge metrics for Kähler morphisms, J. Differential Geom. 83 (2009), no. 1, 131–161. MR 2545032
- Noboru Nakayama, Hodge filtrations and the higher direct images of canonical sheaves, Invent. Math. 85 (1986), no. 1, 217–221. MR 842055, DOI https://doi.org/10.1007/BF01388799
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- M. S. Narasimhan and R. R. Simha, Manifolds with ample canonical class, Invent. Math. 5 (1968), 120–128. MR 236960, DOI https://doi.org/10.1007/BF01425543
- Takeo Ohsawa and Kensh\B{o} Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI https://doi.org/10.1007/BF01166457
- Mihai Păun, Siu’s invariance of plurigenera: a one-tower proof, J. Differential Geom. 76 (2007), no. 3, 485–493. MR 2331528
- Mihnea Popa and Christian Schnell, On direct images of pluricanonical bundles, Algebra Number Theory 8 (2014), no. 9, 2273–2295. MR 3294390, DOI https://doi.org/10.2140/ant.2014.8.2273
- H. Raufi, The Nakano vanishing theorem and a vanishing theorem of Demailly-Nadel type for holomorphic vector bundles, arXiv:1212.4417v1 [math.CV].
- Hossein Raufi, Singular hermitian metrics on holomorphic vector bundles, Ark. Mat. 53 (2015), no. 2, 359–382. MR 3391176, DOI https://doi.org/10.1007/s11512-015-0212-4
- Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 223–277. MR 1922108
- Shigeharu Takayama, Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 753–783 (English, with English and French summaries). MR 3477890
- H. Tsuji, Personal communication to the first-named author, 2005.
- H. Tsuji, Curvature semipositivity of relative pluricanonical systems, arXiv:math/0703729 [math.AG].
- H. Tsuji, Extension of log pluricanonical forms from subvarieties, arXiv:0709.2710 [mathAG].
- Hajime Tsuji, Canonical singular Hermitian metrics on relative canonical bundles, Amer. J. Math. 133 (2011), no. 6, 1469–1501. MR 2863368, DOI https://doi.org/10.1353/ajm.2011.0047
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656, DOI https://doi.org/10.2969/aspm/00110329
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632
References
- Bo Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531–560. MR 2480611, DOI https://doi.org/10.4007/annals.2009.169.531
- Bo Berndtsson, An introduction to things $\overline \partial$, Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Amer. Math. Soc., Providence, RI, 2010, pp. 7–76. MR 2743815
- Bo Berndtsson and Mihai Păun, Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J. 145 (2008), no. 2, 341–378. MR 2449950, DOI https://doi.org/10.1215/00127094-2008-054
- B. Berndtsson and M. Păun, Bergman kernels and subadjunction, arXiv:1002.4145v1 [math.AG].
- Bo Berndtsson and Mihai Păun, Quantitative extensions of pluricanonical forms and closed positive currents, Nagoya Math. J. 205 (2012), 25–65. MR 2891164
- Zbigniew Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), no. 1, 149–158. MR 3069114, DOI https://doi.org/10.1007/s00222-012-0423-2
- Frédéric Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 499–630 (English, with English and French summaries). MR 2097416
- J. Cao, Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and applications, arXiv:1404.6937v1 [mathAG].
- Junyan Cao and Mihai Păun, Kodaira dimension of algebraic fiber spaces over abelian varieties, Invent. Math. 207 (2017), no. 1, 345–387. MR 3592759, DOI https://doi.org/10.1007/s00222-016-0672-6
- Mark Andrea A. de Cataldo, Singular Hermitian metrics on vector bundles, J. Reine Angew. Math. 502 (1998), 93–122. MR 1647555, DOI https://doi.org/10.1515/crll.1998.091
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409. MR 1158622
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Structure theorems for projective and Kähler varieties, Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Amer. Math. Soc., Providence, RI, 2010, pp. 295–370. MR 2743818
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Jean-Pierre Demailly, On the cohomology of pseudoeffective line bundles, Complex geometry and dynamics, Abel Symp., vol. 10, Springer, Cham, 2015, pp. 51–99. MR 3587462
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI https://doi.org/10.1142/S0129167X01000861
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1701–1734 (English, with English and French summaries). MR 2282673
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), no. 3, 607–651. MR 2530849, DOI https://doi.org/10.1353/ajm.0.0054
- Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
- Osamu Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), no. 3, 453–479. MR 2106473
- Osamu Fujino, Corrigendum: Direct images of relative pluricanonical bundles (Algebraic Geometry 3, no. 1, (2016), 50–62) [ MR3455420], Algebr. Geom. 3 (2016), no. 2, 261–263. MR 3477956, DOI https://doi.org/10.14231/AG-2016-012
- Takao Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), no. 4, 779–794. MR 513085, DOI https://doi.org/10.2969/jmsj/03040779
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 0282990
- Qi’an Guan and Xiangyu Zhou, A solution of an $L^2$ extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208. MR 3296822, DOI https://doi.org/10.4007/annals.2015.181.3.6
- Ch. Hacon, M. Popa and Ch. Schnell, Algebraic fibers spaces over abelian varieties: around a recent theorem by Cao and Păun, arXiv:1611.08768 [mathAG].
- Andreas Höring, Positivity of direct image sheaves—a geometric point of view, Enseign. Math. (2) 56 (2010), no. 1-2, 87–142. MR 2674856, DOI https://doi.org/10.4171/LEM/56-1-4
- Yujiro Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), no. 1, 57–71. MR 652646, DOI https://doi.org/10.1007/BF01404756
- Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893–899. MR 1646046
- Yujiro Kawamata, On algebraic fiber spaces, Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000) Nankai Tracts Math., vol. 5, World Sci. Publ., River Edge, NJ, 2002, pp. 135–154. MR 1945358, DOI https://doi.org/10.1142/9789812777416_0006
- Yujiro Kawamata, Semipositivity theorem for reducible algebraic fiber spaces, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1427–1447. MR 2918168, DOI https://doi.org/10.4310/PAMQ.2011.v7.n4.a16
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- János Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202. MR 847955, DOI https://doi.org/10.2307/1971390
- János Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 134–162. MR 2359346, DOI https://doi.org/10.1093/acprof%3Aoso/9780198570615.003.0008
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. MR 1658959
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. MR 2095472
- Christophe Mourougane and Shigeharu Takayama, Hodge metrics and the curvature of higher direct images, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 6, 905–924 (English, with English and French summaries). MR 2504108, DOI https://doi.org/10.24033/asens.2084
- Christophe Mourougane and Shigeharu Takayama, Extension of twisted Hodge metrics for Kähler morphisms, J. Differential Geom. 83 (2009), no. 1, 131–161. MR 2545032
- Noboru Nakayama, Hodge filtrations and the higher direct images of canonical sheaves, Invent. Math. 85 (1986), no. 1, 217–221. MR 842055, DOI https://doi.org/10.1007/BF01388799
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- M. S. Narasimhan and R. R. Simha, Manifolds with ample canonical class, Invent. Math. 5 (1968), 120–128. MR 0236960, DOI https://doi.org/10.1007/BF01425543
- Takeo Ohsawa and Kenshō Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI https://doi.org/10.1007/BF01166457
- Mihai Păun, Siu’s invariance of plurigenera: a one-tower proof, J. Differential Geom. 76 (2007), no. 3, 485–493. MR 2331528
- Mihnea Popa and Christian Schnell, On direct images of pluricanonical bundles, Algebra Number Theory 8 (2014), no. 9, 2273–2295. MR 3294390, DOI https://doi.org/10.2140/ant.2014.8.2273
- H. Raufi, The Nakano vanishing theorem and a vanishing theorem of Demailly-Nadel type for holomorphic vector bundles, arXiv:1212.4417v1 [math.CV].
- Hossein Raufi, Singular hermitian metrics on holomorphic vector bundles, Ark. Mat. 53 (2015), no. 2, 359–382. MR 3391176, DOI https://doi.org/10.1007/s11512-015-0212-4
- Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 223–277. MR 1922108
- Shigeharu Takayama, Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 753–783 (English, with English and French summaries). MR 3477890
- H. Tsuji, Personal communication to the first-named author, 2005.
- H. Tsuji, Curvature semipositivity of relative pluricanonical systems, arXiv:math/0703729 [math.AG].
- H. Tsuji, Extension of log pluricanonical forms from subvarieties, arXiv:0709.2710 [mathAG].
- Hajime Tsuji, Canonical singular Hermitian metrics on relative canonical bundles, Amer. J. Math. 133 (2011), no. 6, 1469–1501. MR 2863368, DOI https://doi.org/10.1353/ajm.2011.0047
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632
Additional Information
Mihai Păun
Affiliation:
Department of Mathematics, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607
Email:
mpaun@uic.edu
Shigeharu Takayama
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914, Japan
Email:
taka@ms.u-tokyo.ac.jp
Received by editor(s):
March 9, 2015
Published electronically:
December 15, 2017
Article copyright:
© Copyright 2017
University Press, Inc.