Density of positive closed currents, a theory of non-generic intersections
Authors:
Tien-Cuong Dinh and Nessim Sibony
Journal:
J. Algebraic Geom. 27 (2018), 497-551
DOI:
https://doi.org/10.1090/jag/711
Published electronically:
March 30, 2018
MathSciNet review:
3803606
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We introduce a notion of density which extends both the notion of the Lelong number and the theory of intersection for positive closed currents on Kähler manifolds. For an arbitrary finite family of positive closed currents on a compact Kähler manifold we construct cohomology classes which represent their intersection even when a phenomenon of dimension excess occurs. An example is the case of two algebraic varieties whose intersection has dimension larger than the expected number. The theory allows us to solve problems in complex dynamics. Basic calculus on the density of currents is established.
References
- Taeyong Ahn, Equidistribution in higher codimension for holomorphic endomorphisms of $\Bbb {P}^k$, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3359–3388. MR 3451880, DOI https://doi.org/10.1090/S0002-9947-2015-06539-8
- André Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 157–202 (French). MR 0087184
- Mongi Blel, Jean-Pierre Demailly, and Mokhtar Mouzali, Sur l’existence du cône tangent à un courant positif fermé, Ark. Mat. 28 (1990), no. 2, 231–248 (French). MR 1084013, DOI https://doi.org/10.1007/BF02387378
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- S. S. Chern, Harold I. Levine, and Louis Nirenberg, Intrinsic norms on a complex manifold, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 119–139. MR 0254877
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- Jean-Pierre Demailly, Courants positifs et théorie de l’intersection, Gaz. Math. 53 (1992), 131–159 (French). MR 1175540
- Jean-Pierre Demailly, Complex analytic and differential geometry, available at www.fourier.ujf-grenoble.fr/$\sim$demailly.
- Georges de Rham, Differentiable manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 266, Springer-Verlag, Berlin, 1984. Forms, currents, harmonic forms; Translated from the French by F. R. Smith; With an introduction by S. S. Chern. MR 760450
- Henry De Thélin and Gabriel Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.) 122 (2010), vi+98 (English, with English and French summaries). MR 2752759, DOI https://doi.org/10.24033/msmf.434
- Tien-Cuong Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15 (2005), no. 2, 207–227 (French, with English summary). MR 2152480, DOI https://doi.org/10.1007/BF02922193
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, Equidistribution for meromorphic maps with dominant topological degree, Indiana Univ. Math. J. 64 (2015), no. 6, 1805–1828. MR 3436236, DOI https://doi.org/10.1512/iumj.2015.64.5674
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, Growth of the number of periodic points for meromorphic maps, Bull. Lond. Math. Soc. 49 (2017), no. 6, 947–964. MR 3743479, DOI https://doi.org/10.1112/blms.12082
- Tien-Cuong Dinh and Nessim Sibony, Regularization of currents and entropy, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 959–971 (English, with English and French summaries). MR 2119243, DOI https://doi.org/10.1016/j.ansens.2004.09.002
- Tien-Cuong Dinh and Nessim Sibony, Decay of correlations and the central limit theorem for meromorphic maps, Comm. Pure Appl. Math. 59 (2006), no. 5, 754–768. MR 2172806, DOI https://doi.org/10.1002/cpa.20119
- Tien-Cuong Dinh and Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221–258 (French, with English summary). MR 2208805, DOI https://doi.org/10.4171/CMH/50
- Tien-Cuong Dinh and Nessim Sibony, Pull-back of currents by holomorphic maps, Manuscripta Math. 123 (2007), no. 3, 357–371. MR 2314090, DOI https://doi.org/10.1007/s00229-007-0103-5
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), no. 1, 1–82. MR 2545825, DOI https://doi.org/10.1007/s11511-009-0038-7
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebraic Geom. 19 (2010), no. 3, 473–529. MR 2629598, DOI https://doi.org/10.1090/S1056-3911-10-00549-7
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI https://doi.org/10.1007/978-3-642-13171-4_4
- Tien-Cuong Dinh and Nessim Sibony, Equidistribution of saddle periodic points for Hénon-type automorphisms of $\Bbb {C}^k$, Math. Ann. 366 (2016), no. 3-4, 1207–1251. MR 3563236, DOI https://doi.org/10.1007/s00208-016-1369-2
- Tien-Cuong Dinh and Nessim Sibony, Unique ergodicity for foliations in $\Bbb P^2$ with an invariant curve, Invent. Math. 211 (2018), no. 1, 1–38. MR 3742755, DOI https://doi.org/10.1007/s00222-017-0744-2
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- John Erik Fornæss and Nessim Sibony, Oka’s inequality for currents and applications, Math. Ann. 301 (1995), no. 3, 399–419. MR 1324517, DOI https://doi.org/10.1007/BF01446636
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Reese Harvey, Holomorphic chains and their boundaries, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R. I., 1977, pp. 309–382. MR 0447619
- Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Christer O. Kiselman, Tangents of plurisubharmonic functions, International Symposium in Memory of Hua Loo Keng, Vol. II (Beijing, 1988) Springer, Berlin, 1991, pp. 157–167 (English, with Esperanto summary). MR 1135833
- P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris-London-New York (Distributed by Dunod éditeur, Paris), 1968 (French). MR 0243112
- Michel Meo, Inégalités d’auto-intersection pour les courants positifs fermés définis dans les variétés projectives, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 1, 161–184 (French). MR 1632996
- Nessim Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985), no. 1, 157–197 (French). MR 791297, DOI https://doi.org/10.1215/S0012-7094-85-05210-X
- Yum Tong Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53–156. MR 352516, DOI https://doi.org/10.1007/BF01389965
- Henri Skoda, Prolongement des courants, positifs, fermés de masse finie, Invent. Math. 66 (1982), no. 3, 361–376 (French). MR 662596, DOI https://doi.org/10.1007/BF01389217
- G. Vigny, Dirichlet-like space and capacity in complex analysis in several variables, J. Funct. Anal. 252 (2007), no. 1, 247–277. MR 2357357, DOI https://doi.org/10.1016/j.jfa.2007.06.007
- Gabriel Vigny, Lelong-Skoda transform for compact Kähler manifolds and self-intersection inequalities, J. Geom. Anal. 19 (2009), no. 2, 433–451. MR 2481969, DOI https://doi.org/10.1007/s12220-008-9056-5
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456
References
- Taeyong Ahn, Equidistribution in higher codimension for holomorphic endomorphisms of $\mathbb {P}^k$, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3359–3388. MR 3451880, DOI https://doi.org/10.1090/tran/6539
- André Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 157–202 (French). MR 0087184
- Mongi Blel, Jean-Pierre Demailly, and Mokhtar Mouzali, Sur l’existence du cône tangent à un courant positif fermé, Ark. Mat. 28 (1990), no. 2, 231–248 (French). MR 1084013, DOI https://doi.org/10.1007/BF02387378
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- S. S. Chern, Harold I. Levine, and Louis Nirenberg, Intrinsic norms on a complex manifold, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 119–139. MR 0254877
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- Jean-Pierre Demailly, Courants positifs et théorie de l’intersection, Gaz. Math. 53 (1992), 131–159 (French). MR 1175540
- Jean-Pierre Demailly, Complex analytic and differential geometry, available at www.fourier.ujf-grenoble.fr/$\sim$demailly.
- Georges de Rham, Differentiable manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 266, Springer-Verlag, Berlin, 1984. Forms, currents, harmonic forms; Translated from the French by F. R. Smith; With an introduction by S. S. Chern. MR 760450
- Henry De Thélin and Gabriel Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.) 122 (2010), vi+98 (English, with English and French summaries). MR 2752759
- Tien-Cuong Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15 (2005), no. 2, 207–227 (French, with English summary). MR 2152480, DOI https://doi.org/10.1007/BF02922193
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, Equidistribution for meromorphic maps with dominant topological degree, Indiana Univ. Math. J. 64 (2015), no. 6, 1805–1828. MR 3436236, DOI https://doi.org/10.1512/iumj.2015.64.5674
- T. C. Dinh, V. A. Nguyen, and T. T. Truong, Growth of the number of periodic points for meromorphic maps, Bull. London Math. Soc. 49 (2017), no. 6, 947–964, DOI 10.1112/blms.12082. MR 3743479
- Tien-Cuong Dinh and Nessim Sibony, Regularization of currents and entropy, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 959–971 (English, with English and French summaries). MR 2119243, DOI https://doi.org/10.1016/j.ansens.2004.09.002
- Tien-Cuong Dinh and Nessim Sibony, Decay of correlations and the central limit theorem for meromorphic maps, Comm. Pure Appl. Math. 59 (2006), no. 5, 754–768. MR 2172806, DOI https://doi.org/10.1002/cpa.20119
- Tien-Cuong Dinh and Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221–258 (French, with English summary). MR 2208805, DOI https://doi.org/10.4171/CMH/50
- Tien-Cuong Dinh and Nessim Sibony, Pull-back of currents by holomorphic maps, Manuscripta Math. 123 (2007), no. 3, 357–371. MR 2314090, DOI https://doi.org/10.1007/s00229-007-0103-5
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), no. 1, 1–82. MR 2545825, DOI https://doi.org/10.1007/s11511-009-0038-7
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebraic Geom. 19 (2010), no. 3, 473–529. MR 2629598, DOI https://doi.org/10.1090/S1056-3911-10-00549-7
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI https://doi.org/10.1007/978-3-642-13171-4_4
- Tien-Cuong Dinh and Nessim Sibony, Equidistribution of saddle periodic points for Hénon-type automorphisms of $\mathbb {C}^k$, Math. Ann. 366 (2016), no. 3-4, 1207–1251. MR 3563236, DOI https://doi.org/10.1007/s00208-016-1369-2
- T.-C. Dinh and N. Sibony, Unique ergodicity for foliations in $\mathbb {P}^2$ with an invariant curve, Invent. Math. 211 (2018), no. 1, 1–38. MR 3742755
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- John Erik Fornæss and Nessim Sibony, Oka’s inequality for currents and applications, Math. Ann. 301 (1995), no. 3, 399–419. MR 1324517, DOI https://doi.org/10.1007/BF01446636
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Reese Harvey, Holomorphic chains and their boundaries, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R. I., 1977, pp. 309–382. MR 0447619
- Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Christer O. Kiselman, Tangents of plurisubharmonic functions, International Symposium in Memory of Hua Loo Keng, Vol. II (Beijing, 1988) Springer, Berlin, 1991, pp. 157–167 (English, with Esperanto summary). MR 1135833
- P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris-London-New York (Distributed by Dunod éditeur, Paris), 1968 (French). MR 0243112
- Michel Meo, Inégalités d’auto-intersection pour les courants positifs fermés définis dans les variétés projectives, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 1, 161–184 (French). MR 1632996
- Nessim Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985), no. 1, 157–197 (French). MR 791297, DOI https://doi.org/10.1215/S0012-7094-85-05210-X
- Yum Tong Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53–156. MR 0352516, DOI https://doi.org/10.1007/BF01389965
- Henri Skoda, Prolongement des courants, positifs, fermés de masse finie, Invent. Math. 66 (1982), no. 3, 361–376 (French). MR 662596, DOI https://doi.org/10.1007/BF01389217
- G. Vigny, Dirichlet-like space and capacity in complex analysis in several variables, J. Funct. Anal. 252 (2007), no. 1, 247–277. MR 2357357, DOI https://doi.org/10.1016/j.jfa.2007.06.007
- Gabriel Vigny, Lelong-Skoda transform for compact Kähler manifolds and self-intersection inequalities, J. Geom. Anal. 19 (2009), no. 2, 433–451. MR 2481969, DOI https://doi.org/10.1007/s12220-008-9056-5
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456
Additional Information
Tien-Cuong Dinh
Affiliation:
Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
MR Author ID:
608547
Email:
matdtc@nus.edu.sg
Nessim Sibony
Affiliation:
Université Paris-Sud, Mathématique - Bâtiment 425, 91405 Orsay, France
MR Author ID:
161495
Email:
nessim.sibony@math.u-psud.fr
Received by editor(s):
November 13, 2015
Received by editor(s) in revised form:
December 26, 2016, and July 18, 2017
Published electronically:
March 30, 2018
Article copyright:
© Copyright 2018
University Press, Inc.