Strong approximation over function fields
Authors:
Qile Chen and Yi Zhu
Journal:
J. Algebraic Geom. 27 (2018), 703-725
DOI:
https://doi.org/10.1090/jag/706
Published electronically:
June 8, 2018
MathSciNet review:
3846551
Full-text PDF
Abstract |
References |
Additional Information
Abstract: By studying $\mathbb {A}^1$-curves on varieties, we propose a geometric approach to the strong approximation problem over function fields of complex curves. We prove that strong approximation holds for smooth, low degree affine complete intersections with smooth boundary at infinity.
References
- Dan Abramovich and Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. MR 3257836, DOI https://doi.org/10.4310/AJM.2014.v18.n3.a5
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545 (French). MR 1191735
- Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2) 180 (2014), no. 2, 455–521. MR 3224717, DOI https://doi.org/10.4007/annals.2014.180.2.2
- Jean-Louis Colliot-Thélène, Approximation forte pour les espaces homogènes de groupes semi-simples sur le corps des fonctions d’une courbe algébrique complexe, Eur. J. Math. 4 (2018), no. 1, 177–184 (French, with English and French summaries). MR 3782219, DOI https://doi.org/10.1007/s40879-017-0133-9
- Jean-Louis Colliot-Thélène and Fei Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compos. Math. 145 (2009), no. 2, 309–363. With an appendix by Dasheng Wei and Xu. MR 2501421, DOI https://doi.org/10.1112/S0010437X0800376X
- Qile Chen and Yi Zhu, $\mathbb {A}^1$-curves on log smooth varieties, J. Reine Angew. Math. arXiv:1407.5476., DOI https://doi.org/10.1515/crelle-2017-0028
- Qile Chen and Yi Zhu, Very free curves on Fano complete intersections, Algebr. Geom. 1 (2014), no. 5, 558–572. MR 3296805, DOI https://doi.org/10.14231/AG-2014-024
- Qile Chen and Yi Zhu, $\Bbb A^1$-connected varieties of rank one over nonclosed fields, Math. Ann. 364 (2016), no. 3-4, 1505–1515. MR 3466876, DOI https://doi.org/10.1007/s00208-015-1257-1
- Qile Chen and Yi Zhu, On the irreducibility of the space of genus zero stable log maps to wonderful compactifications, Int. Math. Res. Not. IMRN 10 (2016), 3029–3050. MR 3551829, DOI https://doi.org/10.1093/imrn/rnv232
- A. J. de Jong and J. Starr, Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math. 125 (2003), no. 3, 567–580. MR 1981034
- A. J. de Jong and J. Starr, Low degree complete intersections are rationally simply connected, preprint, available at http://www.math.sunysb.edu/$\sim$jstarr/ papers/index.html.
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI https://doi.org/10.1090/S0894-0347-02-00402-2
- Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419, DOI https://doi.org/10.1090/S0894-0347-2012-00757-7
- Brendan Hassett, Weak approximation and rationally connected varieties over function fields of curves, Variétés rationnellement connexes: aspects géométriques et arithmétiques, Panor. Synthèses, vol. 31, Soc. Math. France, Paris, 2010, pp. 115–153 (English, with English and French summaries). MR 2931861
- Brendan Hassett and Yuri Tschinkel, Density of integral points on algebraic varieties, Rational points on algebraic varieties, Progr. Math., vol. 199, Birkhäuser, Basel, 2001, pp. 169–197. MR 1875174, DOI https://doi.org/10.1007/978-3-0348-8368-9_7
- Brendan Hassett and Yuri Tschinkel, Weak approximation over function fields, Invent. Math. 163 (2006), no. 1, 171–190. MR 2208420, DOI https://doi.org/10.1007/s00222-005-0458-8
- Brendan Hassett and Yuri Tschinkel, Log Fano varieties over function fields of curves, Invent. Math. 173 (2008), no. 1, 7–21. MR 2403393, DOI https://doi.org/10.1007/s00222-008-0113-2
- Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
- Fumiharu Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000), no. 2, 215–232. MR 1754621, DOI https://doi.org/10.1142/S0129167X0000012X
- Bumsig Kim, Logarithmic stable maps, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 167–200. MR 2683209, DOI https://doi.org/10.2969/aspm/05910167
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- Martin C. Olsson, Universal log structures on semi-stable varieties, Tohoku Math. J. (2) 55 (2003), no. 3, 397–438. MR 1993863
- Martin C. Olsson, (Log) twisted curves, Compos. Math. 143 (2007), no. 2, 476–494. MR 2309994, DOI https://doi.org/10.1112/S0010437X06002442
- Xuanyu Pan, Moduli space of 2-minimal-dominant rational curves on low degree complete intersections, arXiv:1310.3448.
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760
- Yi Zhu, Log rationally connected surfaces, Math. Res. Lett. 23 (2016), no. 5, 1527–1536. MR 3601077, DOI https://doi.org/10.4310/MRL.2016.v23.n5.a13
References
- Dan Abramovich and Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. MR 3257836, DOI https://doi.org/10.4310/AJM.2014.v18.n3.a5
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545 (French). MR 1191735
- Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2) 180 (2014), no. 2, 455–521. MR 3224717, DOI https://doi.org/10.4007/annals.2014.180.2.2
- Jean-Louis Colliot-Thélène, Approximation forte pour les espaces homogènes de groupes semi-simples sur le corps des fonctions d’une courbe algébrique complexe, Eur. J. Math. 4 (2018), no. 1, 177–184. MR 3782219, DOI https://doi.org/10.1007/s40879-017-0133-9
- Jean-Louis Colliot-Thélène and Fei Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, with an appendix by Dasheng Wei and Xu, Compos. Math. 145 (2009), no. 2, 309–363. MR 2501421, DOI https://doi.org/10.1112/S0010437X0800376X
- Qile Chen and Yi Zhu, $\mathbb {A}^1$-curves on log smooth varieties, J. Reine Angew. Math. arXiv:1407.5476., DOI https://doi.org/10.1515/crelle-2017-0028
- Qile Chen and Yi Zhu, Very free curves on Fano complete intersections, Algebr. Geom. 1 (2014), no. 5, 558–572. MR 3296805, DOI https://doi.org/10.14231/AG-2014-024
- Qile Chen and Yi Zhu, $\mathbb {A}^1$-connected varieties of rank one over nonclosed fields, Math. Ann. 364 (2016), no. 3-4, 1505–1515. MR 3466876, DOI https://doi.org/10.1007/s00208-015-1257-1
- Qile Chen and Yi Zhu, On the irreducibility of the space of genus zero stable log maps to wonderful compactifications, Int. Math. Res. Not. IMRN 10 (2016), 3029–3050. MR 3551829, DOI https://doi.org/10.1093/imrn/rnv232
- A. J. de Jong and J. Starr, Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math. 125 (2003), no. 3, 567–580. MR 1981034
- A. J. de Jong and J. Starr, Low degree complete intersections are rationally simply connected, preprint, available at http://www.math.sunysb.edu/$\sim$jstarr/ papers/index.html.
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI https://doi.org/10.1090/S0894-0347-02-00402-2
- Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419, DOI https://doi.org/10.1090/S0894-0347-2012-00757-7
- Brendan Hassett, Weak approximation and rationally connected varieties over function fields of curves, Variétés rationnellement connexes: aspects géométriques et arithmétiques, Panor. Synthèses, vol. 31, Soc. Math. France, Paris, 2010, pp. 115–153 (English, with English and French summaries). MR 2931861
- Brendan Hassett and Yuri Tschinkel, Density of integral points on algebraic varieties, Rational points on algebraic varieties, Progr. Math., vol. 199, Birkhäuser, Basel, 2001, pp. 169–197. MR 1875174, DOI https://doi.org/10.1007/978-3-0348-8368-9_7
- Brendan Hassett and Yuri Tschinkel, Weak approximation over function fields, Invent. Math. 163 (2006), no. 1, 171–190. MR 2208420, DOI https://doi.org/10.1007/s00222-005-0458-8
- Brendan Hassett and Yuri Tschinkel, Log Fano varieties over function fields of curves, Invent. Math. 173 (2008), no. 1, 7–21. MR 2403393, DOI https://doi.org/10.1007/s00222-008-0113-2
- Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
- Fumiharu Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000), no. 2, 215–232. MR 1754621, DOI https://doi.org/10.1142/S0129167X0000012X
- Bumsig Kim, Logarithmic stable maps, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 167–200. MR 2683209
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- Martin C. Olsson, Universal log structures on semi-stable varieties, Tohoku Math. J. (2) 55 (2003), no. 3, 397–438. MR 1993863
- Martin C. Olsson, (Log) twisted curves, Compos. Math. 143 (2007), no. 2, 476–494. MR 2309994, DOI https://doi.org/10.1112/S0010437X06002442
- Xuanyu Pan, Moduli space of 2-minimal-dominant rational curves on low degree complete intersections, arXiv:1310.3448.
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. MR 1278263
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760
- Yi Zhu, Log rationally connected surfaces, Math. Res. Lett. 23 (2016), no. 5, 1527–1536. MR 3601077, DOI https://doi.org/10.4310/MRL.2016.v23.n5.a13
Additional Information
Qile Chen
Affiliation:
Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467-3806
MR Author ID:
924581
Email:
qile.chen@bc.edu
Yi Zhu
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
MR Author ID:
1094131
Email:
yi.zhu@uwaterloo.ca
Received by editor(s):
May 19, 2016
Received by editor(s) in revised form:
March 21, 2017
Published electronically:
June 8, 2018
Additional Notes:
The first author was supported by NSF grant DMS-1403271 and DMS-1560830.
Article copyright:
© Copyright 2018
University Press, Inc.