Minimal plane valuations
Authors:
Carlos Galindo, Francisco Monserrat and Julio-José Moyano-Fernández
Journal:
J. Algebraic Geom. 27 (2018), 751-783
DOI:
https://doi.org/10.1090/jag/722
Published electronically:
July 16, 2018
MathSciNet review:
3846553
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We consider the value $\hat {\mu } (\nu ) = \lim _{m \rightarrow \infty } m^{-1} a(mL)$, where $a(mL)$ is the last value of the vanishing sequence of $H^0(mL)$ along a divisorial or irrational valuation $\nu$ centered at $\mathcal {O}_{\mathbb {P}^2,p}$, $L$ (respectively, $p$) being a line (respectively, a point) of the projective plane $\mathbb {P}^2$ over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that $\hat {\mu } (\nu ) \geq \sqrt {1 / \mathrm {vol}(\nu )}$ and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. 25 (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.
References
- Shreeram Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic $p\ne 0$, Ann. of Math. (2) 63 (1956), 491–526. MR 78017, DOI https://doi.org/10.2307/1970014
- Shreeram Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348. MR 82477, DOI https://doi.org/10.2307/2372519
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II, J. Reine Angew. Math. 260 (1973), 47–83; ibid. 261 (1973), 29–54. MR 337955, DOI https://doi.org/10.1515/crll.1973.260.47
- Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Michał Kapustka, Andreas Knutsen, Wioletta Syzdek, and Tomasz Szemberg, A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry, Contemp. Math., vol. 496, Amer. Math. Soc., Providence, RI, 2009, pp. 33–70. MR 2555949, DOI https://doi.org/10.1090/conm/496/09718
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, A refinement of Izumi’s theorem, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, pp. 55–81. MR 3329027
- Sébastien Boucksom, Alex Küronya, Catriona Maclean, and Tomasz Szemberg, Vanishing sequences and Okounkov bodies, Math. Ann. 361 (2015), no. 3-4, 811–834. MR 3319549, DOI https://doi.org/10.1007/s00208-014-1081-z
- Antonio Campillo, Algebroid curves in positive characteristic, Lecture Notes in Mathematics, vol. 813, Springer, Berlin, 1980. MR 584440
- A. Campillo, F. Delgado, and S. M. Gusein-Zade, On generators of the semigroup of a plane curve singularity, J. London Math. Soc. (2) 60 (1999), no. 2, 420–430. MR 1724869, DOI https://doi.org/10.1112/S0024610799007917
- Eduardo Casas-Alvero, Singularities of plane curves, London Mathematical Society Lecture Note Series, vol. 276, Cambridge University Press, Cambridge, 2000. MR 1782072
- Ciro Ciliberto, Michal Farnik, Alex Küronya, Victor Lozovanu, Joaquim Roé, and Constantin Shramov, Newton-Okounkov bodies sprouting on the valuative tree, Rend. Circ. Mat. Palermo (2) 66 (2017), no. 2, 161–194. MR 3694973, DOI https://doi.org/10.1007/s12215-016-0285-3
- Steven Dale Cutkosky, Lawrence Ein, and Robert Lazarsfeld, Positivity and complexity of ideal sheaves, Math. Ann. 321 (2001), no. 2, 213–234. MR 1866486, DOI https://doi.org/10.1007/s002080100220
- Félix Delgado de la Mata, The semigroup of values of a curve singularity with several branches, Manuscripta Math. 59 (1987), no. 3, 347–374. MR 909850, DOI https://doi.org/10.1007/BF01174799
- Félix Delgado, Carlos Galindo, and Ana Núñez, Saturation for valuations on two-dimensional regular local rings, Math. Z. 234 (2000), no. 3, 519–550. MR 1774096, DOI https://doi.org/10.1007/PL00004811
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI https://doi.org/10.1007/BFb0094512
- Marcin Dumnicki, Brian Harbourne, Alex Küronya, Joaquim Roé, and Tomasz Szemberg, Very general monomial valuations of $\Bbb P^2$ and a Nagata type conjecture, Comm. Anal. Geom. 25 (2017), no. 1, 125–161. MR 3663314, DOI https://doi.org/10.4310/CAG.2017.v25.n1.a4
- M. Dumnicki, A. Küronya, C. Maclean, and T. Szemberg, Seshadi constants via functions on Newton-Okounkov bodies, Math. Nachr. 289 (2016), no. 17-18, 2173–2177. MR 3583263, DOI https://doi.org/10.1002/mana.201500280
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690
- Charles Favre and Mattias Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722
- C. Galindo, Plane valuations and their completions, Comm. Algebra 23 (1995), no. 6, 2107–2123. MR 1327126, DOI https://doi.org/10.1080/00927879508825332
- C. Galindo and F. Monserrat, The total coordinate ring of a smooth projective surface, J. Algebra 284 (2005), no. 1, 91–101. MR 2115006, DOI https://doi.org/10.1016/j.jalgebra.2004.10.004
- C. Galindo and F. Monserrat, The cone of curves associated to a plane configuration, Comment. Math. Helv. 80 (2005), no. 1, 75–93. MR 2130567, DOI https://doi.org/10.4171/CMH/5
- C. Galindo and F. Monserrat, The cone of curves and the Cox ring of rational surfaces given by divisorial valuations, Adv. Math. 290 (2016), 1040–1061. MR 3451946, DOI https://doi.org/10.1016/j.aim.2015.12.015
- Silvio Greco and Karlheinz Kiyek, General elements of complete ideals and valuations centered at a two-dimensional regular local ring, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 381–455. MR 2037102
- G. M. Greuel, C. Lossen, and E. Shustin, Singular algebraic curves, unpublished book, xii+400 pp.
- Hagen Knaf and Franz-Viktor Kuhlmann, Abhyankar places admit local uniformization in any characteristic, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 833–846 (English, with English and French summaries). MR 2216832, DOI https://doi.org/10.1016/j.ansens.2005.09.001
- Mark Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), no. 1, 107–156. MR 1037606, DOI https://doi.org/10.2307/2374856
- Bernard Teissier, Valuations, deformations, and toric geometry, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 361–459. MR 2018565
- Oscar Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939), 639–689. MR 159, DOI https://doi.org/10.2307/1968949
- Oscar Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852–896. MR 2864, DOI https://doi.org/10.2307/1968864
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition; Graduate Texts in Mathematics, Vol. 29. MR 0389876
References
- Shreeram Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic $p\ne 0$, Ann. of Math. (2) 63 (1956), 491–526. MR 0078017, DOI https://doi.org/10.2307/1970014
- Shreeram Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348. MR 0082477, DOI https://doi.org/10.2307/2372519
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Newton–Puiseux expansion and generalized Tschirnhausen transformation. I, II, J. Reine Angew. Math. 260 (1973), 47–83; ibid. 261 (1973), 29–54. MR 0337955, DOI https://doi.org/10.1515/crll.1973.260.47
- Thomas Bauer, Sandra Di Rocco, Brian Harbourne, MichałKapustka, Andreas Knutsen, Wioletta Syzdek, and Tomasz Szemberg, A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry, Contemp. Math., vol. 496, Amer. Math. Soc., Providence, RI, 2009, pp. 33–70. MR 2555949, DOI https://doi.org/10.1090/conm/496/09718
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, A refinement of Izumi’s theorem, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, pp. 55–81. MR 3329027
- Sébastien Boucksom, Alex Küronya, Catriona Maclean, and Tomasz Szemberg, Vanishing sequences and Okounkov bodies, Math. Ann. 361 (2015), no. 3-4, 811–834. MR 3319549, DOI https://doi.org/10.1007/s00208-014-1081-z
- Antonio Campillo, Algebroid curves in positive characteristic, Lecture Notes in Mathematics, vol. 813, Springer, Berlin, 1980. MR 584440
- A. Campillo, F. Delgado, and S. M. Gusein-Zade, On generators of the semigroup of a plane curve singularity, J. London Math. Soc. (2) 60 (1999), no. 2, 420–430. MR 1724869, DOI https://doi.org/10.1112/S0024610799007917
- Eduardo Casas-Alvero, Singularities of plane curves, London Mathematical Society Lecture Note Series, vol. 276, Cambridge University Press, Cambridge, 2000. MR 1782072
- Ciro Ciliberto, Michal Farnik, Alex Küronya, Victor Lozovanu, Joaquim Roé, and Constantin Shramov, Newton–Okounkov bodies sprouting on the valuative tree, Rend. Circ. Mat. Palermo (2) 66 (2017), no. 2, 161–194. MR 3694973, DOI https://doi.org/10.1007/s12215-016-0285-3
- Steven Dale Cutkosky, Lawrence Ein, and Robert Lazarsfeld, Positivity and complexity of ideal sheaves, Math. Ann. 321 (2001), no. 2, 213–234. MR 1866486, DOI https://doi.org/10.1007/s002080100220
- Félix Delgado de la Mata, The semigroup of values of a curve singularity with several branches, Manuscripta Math. 59 (1987), no. 3, 347–374. MR 909850, DOI https://doi.org/10.1007/BF01174799
- Félix Delgado, Carlos Galindo, and Ana Núñez, Saturation for valuations on two-dimensional regular local rings, Math. Z. 234 (2000), no. 3, 519–550. MR 1774096, DOI https://doi.org/10.1007/PL00004811
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI https://doi.org/10.1007/BFb0094512
- Marcin Dumnicki, Brian Harbourne, Alex Küronya, Joaquim Roé, and Tomasz Szemberg, Very general monomial valuations of $\mathbb {P}^2$ and a Nagata type conjecture, Comm. Anal. Geom. 25 (2017), no. 1, 125–161. MR 3663314, DOI https://doi.org/10.4310/CAG.2017.v25.n1.a4
- M. Dumnicki, A. Küronya, C. Maclean, and T. Szemberg, Seshadi constants via functions on Newton–Okounkov bodies, Math. Nachr. 289 (2016), no. 17-18, 2173–2177. MR 3583263, DOI https://doi.org/10.1002/mana.201500280
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690
- Charles Favre and Mattias Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722
- C. Galindo, Plane valuations and their completions, Comm. Algebra 23 (1995), no. 6, 2107–2123. MR 1327126, DOI https://doi.org/10.1080/00927879508825332
- C. Galindo and F. Monserrat, The total coordinate ring of a smooth projective surface, J. Algebra 284 (2005), no. 1, 91–101. MR 2115006, DOI https://doi.org/10.1016/j.jalgebra.2004.10.004
- C. Galindo and F. Monserrat, The cone of curves associated to a plane configuration, Comment. Math. Helv. 80 (2005), no. 1, 75–93. MR 2130567, DOI https://doi.org/10.4171/CMH/5
- C. Galindo and F. Monserrat, The cone of curves and the Cox ring of rational surfaces given by divisorial valuations, Adv. Math. 290 (2016), 1040–1061. MR 3451946, DOI https://doi.org/10.1016/j.aim.2015.12.015
- Silvio Greco and Karlheinz Kiyek, General elements of complete ideals and valuations centered at a two-dimensional regular local ring, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 381–455. MR 2037102
- G. M. Greuel, C. Lossen, and E. Shustin, Singular algebraic curves, unpublished book, xii+400 pp.
- Hagen Knaf and Franz-Viktor Kuhlmann, Abhyankar places admit local uniformization in any characteristic, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 833–846 (English, with English and French summaries). MR 2216832, DOI https://doi.org/10.1016/j.ansens.2005.09.001
- Mark Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), no. 1, 107–156. MR 1037606, DOI https://doi.org/10.2307/2374856
- Bernard Teissier, Valuations, deformations, and toric geometry, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 361–459. MR 2018565
- Oscar Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939), 639–689. MR 0000159, DOI https://doi.org/10.2307/1968949
- Oscar Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852–896. MR 0002864, DOI https://doi.org/10.2307/1968864
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. MR 0389876
Additional Information
Carlos Galindo
Affiliation:
Instituto Universitario de Matemáticas y Aplicaciones de Castellón and Departamento de Matemáticas, Universitat Jaume I, Campus de Riu Sec. s/n, 12071 Castelló de la Plana, Spain
Email:
galindo@mat.uji.es
Francisco Monserrat
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
MR Author ID:
738424
Email:
framonde@mat.upv.es
Julio-José Moyano-Fernández
Affiliation:
Instituto Universitario de Matemáticas y Aplicaciones de Castellón and Departamento de Matemáticas, Universitat Jaume I, Campus de Riu Sec. s/n, 12071 Castelló de la Plana, Spain
Email:
moyano@uji.es
Received by editor(s):
May 3, 2017
Published electronically:
July 16, 2018
Additional Notes:
The authors were partially supported by the Spanish Government Ministerio de Economía, Industria y Competitividad/FEDER, grants MTM2012-36917-C03-03, MTM2015-65764-C3-2-P, and MTM2016-81735-REDT, as well as by Universitat Jaume I, grant P1-1B2015-02.
Article copyright:
© Copyright 2018
University Press, Inc.