Stable rationality of orbifold Fano 3-fold hypersurfaces
Author:
Takuzo Okada
Journal:
J. Algebraic Geom. 28 (2019), 99-138
DOI:
https://doi.org/10.1090/jag/712
Published electronically:
September 26, 2018
MathSciNet review:
3875362
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We determine the rationality of very general quasi-smooth Fano $3$-fold weighted hypersurfaces completely and determine the stable rationality of them except for cubic $3$-folds. More precisely we prove that (i) very general Fano $3$-fold weighted hypersurfaces of index $1$ or $2$ are not stably rational except possibly for the cubic 3-folds, (ii) among the $27$ families of Fano 3-fold weighted hypersurfaces of index greater than $2$, very general members of $7$ specific families are not stably rational, and the remaining $20$ families consist of rational varieties.
References
- Arnaud Beauville, A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc. 48 (2016), no. 2, 321–324. MR 3483069, DOI https://doi.org/10.1112/blms/bdv098
- Gavin Brown and Kaori Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math. 24 (2007), no. 3, 241–250. MR 2374989
- Gavin Brown and Kaori Suzuki, Fano 3-folds with divisible anticanonical class, Manuscripta Math. 123 (2007), no. 1, 37–51. MR 2300058, DOI https://doi.org/10.1007/s00229-007-0082-6
- Morgan V. Brown, James McKernan, Roberto Svaldi, and Hong R. Zong, A geometric characterization of toric varieties, Duke Math. J. 167 (2018), no. 5, 923–968. MR 3782064, DOI https://doi.org/10.1215/00127094-2017-0047
- Ivan Cheltsov and Jihun Park, Birationally rigid Fano threefold hypersurfaces, Mem. Amer. Math. Soc. 246 (2017), no. 1167, v+117. MR 3605615, DOI https://doi.org/10.1090/memo/1167
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI https://doi.org/10.2307/1970801
- Jean-Louis Colliot-Thélène and Alena Pirutka, Hypersurfaces quartiques de dimension 3: non-rationalité stable, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 371–397 (French, with English and French summaries). MR 3481353, DOI https://doi.org/10.24033/asens.2285
- Zh.-L. Kol′ë-Telèn and E. V. Piryutko, Cyclic covers that are not stably rational, Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016), no. 4, 35–48 (Russian, with Russian summary); English transl., Izv. Math. 80 (2016), no. 4, 665–677. MR 3535357, DOI https://doi.org/10.4213/im8429
- Alessio Corti, Aleksandr Pukhlikov, and Miles Reid, Fano $3$-fold hypersurfaces, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 175–258. MR 1798983
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Robert M. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. MR 0382254
- B. Hassett and Y. Tschinkel, On stable rationality of Fano threefolds and del Pezzo fibrations, J. Reine Angew. Math., published online (2016), DOI: 10.1515/crelle-2016-0058 (to appear in print).
- A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 101–173. MR 1798982
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 0291172
- János Kollár, Nonrational hypersurfaces, J. Amer. Math. Soc. 8 (1995), no. 1, 241–249. MR 1273416, DOI https://doi.org/10.1090/S0894-0347-1995-1273416-8
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525
- Takuzo Okada, Nonrational weighted hypersurfaces, Nagoya Math. J. 194 (2009), 1–32. MR 2536525, DOI https://doi.org/10.1017/S0027763000009612
- Takuzo Okada, $\Bbb Q$-Fano threefolds with three birational Mori fiber structures, Algebraic varieties and automorphism groups, Adv. Stud. Pure Math., vol. 75, Math. Soc. Japan, Tokyo, 2017, pp. 393–424. MR 3793370, DOI https://doi.org/10.2969/aspm/07510393
- T. Okada, Stable rationality of cyclic covers of projective spaces, arXiv:1604.08417, 2016.
- Burt Totaro, Hypersurfaces that are not stably rational, J. Amer. Math. Soc. 29 (2016), no. 3, 883–891. MR 3486175, DOI https://doi.org/10.1090/S0894-0347-2015-00840-2
- Charles Vial, Algebraic cycles and fibrations, Doc. Math. 18 (2013), 1521–1553. MR 3158241
- Claire Voisin, Unirational threefolds with no universal codimension $2$ cycle, Invent. Math. 201 (2015), no. 1, 207–237. MR 3359052, DOI https://doi.org/10.1007/s00222-014-0551-y
- Keiichi Watanabe, Some remarks concerning Demazure’s construction of normal graded rings, Nagoya Math. J. 83 (1981), 203–211. MR 632654
References
- Arnaud Beauville, A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc. 48 (2016), no. 2, 321–324. MR 3483069
- Gavin Brown and Kaori Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math. 24 (2007), no. 3, 241–250. MR 2374989
- Gavin Brown and Kaori Suzuki, Fano 3-folds with divisible anticanonical class, Manuscripta Math. 123 (2007), no. 1, 37–51. MR 2300058
- Morgan V. Brown, James McKernan, Roberto Svaldi, and Hong R. Zong, A geometric characterization of toric varieties, Duke Math. J. 167 (2018), no. 5, 923–968. MR 3782064, DOI https://doi.org/10.1215/00127094-2017-0047
- Ivan Cheltsov and Jihun Park, Birationally rigid Fano threefold hypersurfaces, Mem. Amer. Math. Soc. 246 (2017), no. 1167, v+117. MR 3605615
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 0302652
- Jean-Louis Colliot-Thélène and Alena Pirutka, Hypersurfaces quartiques de dimension 3: non-rationalité stable, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 371–397 (French, with English and French summaries). MR 3481353
- Zh.-L. Kol′ë-Telèn and E. V. Piryutko [J.-L. Colliot-Thélène and A. Pirutka], Cyclic covers that are not stably rational, Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016), no. 4, 35–48 (Russian, with Russian summary); English transl., Izv. Math. 80 (2016), no. 4, 665–677. MR 3535357
- Alessio Corti, Aleksandr Pukhlikov, and Miles Reid, Fano $3$-fold hypersurfaces, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 175–258. MR 1798983
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- B. Hassett and Y. Tschinkel, On stable rationality of Fano threefolds and del Pezzo fibrations, J. Reine Angew. Math., published online (2016), DOI: 10.1515/crelle-2016-0058 (to appear in print).
- A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 101–173. MR 1798982
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 0291172
- János Kollár, Nonrational hypersurfaces, J. Amer. Math. Soc. 8 (1995), no. 1, 241–249. MR 1273416
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525
- Takuzo Okada, Nonrational weighted hypersurfaces, Nagoya Math. J. 194 (2009), 1–32. MR 2536525
- Takuzo Okada, $\Bbb Q$-Fano threefolds with three birational Mori fiber structures, Algebraic varieties and automorphism groups, Adv. Stud. Pure Math., vol. 75, Math. Soc. Japan, Tokyo, 2017, pp. 393–424. MR 3793370
- T. Okada, Stable rationality of cyclic covers of projective spaces, arXiv:1604.08417, 2016.
- Burt Totaro, Hypersurfaces that are not stably rational, J. Amer. Math. Soc. 29 (2016), no. 3, 883–891. MR 3486175
- Charles Vial, Algebraic cycles and fibrations, Doc. Math. 18 (2013), 1521–1553. MR 3158241
- Claire Voisin, Unirational threefolds with no universal codimension $2$ cycle, Invent. Math. 201 (2015), no. 1, 207–237. MR 3359052
- Keiichi Watanabe, Some remarks concerning Demazure’s construction of normal graded rings, Nagoya Math. J. 83 (1981), 203–211. MR 632654
Additional Information
Takuzo Okada
Affiliation:
Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
MR Author ID:
873741
Email:
okada@cc.saga-u.ac.jp
Received by editor(s):
October 13, 2016
Received by editor(s) in revised form:
September 4, 2017, and November 2, 2017
Published electronically:
September 26, 2018
Additional Notes:
The author would like to thank Professor Ivan Cheltsov for having interest in this work. The author was partially supported by JSPS KAKENHI grant number 26800019.
Article copyright:
© Copyright 2018
University Press, Inc.