Which quartic double solids are rational?
Authors:
Ivan Cheltsov, Victor Przyjalkowski and Constantin Shramov
Journal:
J. Algebraic Geom. 28 (2019), 201-243
DOI:
https://doi.org/10.1090/jag/730
Published electronically:
December 7, 2018
MathSciNet review:
3912057
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We study the rationality problem for nodal quartic double solids. In particular, we prove that nodal quartic double solids with at most six singular points are irrational and nodal quartic double solids with at least eleven singular points are rational.
References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985. The classification of critical points, caustics and wave fronts; Translated from the Russian by Ian Porteous and Mark Reynolds. MR 777682
- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95. MR 321934, DOI https://doi.org/10.1112/plms/s3-25.1.75
- Arnaud Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 309–391 (French). MR 472843
- Arnaud Beauville, A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc. 48 (2016), no. 2, 321–324. MR 3483069, DOI https://doi.org/10.1112/blms/bdv098
- Ivan Cheltsov, Points in projective spaces and applications, J. Differential Geom. 81 (2009), no. 3, 575–599. MR 2487601
- Ivan Cheltsov and Jihun Park, Sextic double solids, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 75–132. MR 2605166, DOI https://doi.org/10.1007/978-0-8176-4934-0_4
- Ivan Cheltsov, Victor Przyjalkowski, and Constantin Shramov, Quartic double solids with icosahedral symmetry, Eur. J. Math. 2 (2016), no. 1, 96–119. MR 3454093, DOI https://doi.org/10.1007/s40879-015-0086-9
- C. Herbert Clemens, Double solids, Adv. in Math. 47 (1983), no. 2, 107–230. MR 690465, DOI https://doi.org/10.1016/0001-8708%2883%2990025-7
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI https://doi.org/10.2307/1970801
- Steven Cutkosky, Elementary contractions of Gorenstein threefolds, Math. Ann. 280 (1988), no. 3, 521–525. MR 936328, DOI https://doi.org/10.1007/BF01456342
- Olivier Debarre, Sur le théorème de Torelli pour les solides doubles quartiques, Compositio Math. 73 (1990), no. 2, 161–187 (French). MR 1046736
- M. Demazure, Surfaces de del Pezzo I, II, III, IV, V, Lecture Notes in Math., 777, Springer-Verlag, 1980.
- M. M. Grinenko, Birational automorphisms of a three-dimensional double cone, Mat. Sb. 189 (1998), no. 7, 37–52 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 7-8, 991–1007. MR 1659819, DOI https://doi.org/10.1070/SM1998v189n07ABEH000336
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Kyusik Hong and Jihun Park, On factorial double solids with simple double points, J. Pure Appl. Algebra 208 (2007), no. 1, 361–369. MR 2269850, DOI https://doi.org/10.1016/j.jpaa.2006.01.003
- P. Francia, Some remarks on minimal models. I, Compositio Math. 40 (1980), no. 3, 301–313. MR 571052
- Atanas Iliev, Ludmil Katzarkov, and Victor Przyjalkowski, Double solids, categories and non-rationality, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 145–173. MR 3165018, DOI https://doi.org/10.1017/S0013091513000898
- V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1–247. MR 1668579
- Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, DOI https://doi.org/10.1007/BF01456407
- Yujiro Kawamata, Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, 93–163. MR 924674, DOI https://doi.org/10.2307/1971417
- Vik. S. Kulikov, Degenerations of $K3$ surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008–1042, 1199 (Russian). MR 0506296
- Shigefumi Mori, Flip theorem and the existence of minimal models for $3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, DOI https://doi.org/10.1090/S0894-0347-1988-0924704-X
- A. Pirutka, Varieties that are not stably rational, zero-cycles and unramified cohomology, Algebraic Geometry (Salt Lake City, UT, 2015), Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 459–484.
- Yuri Prokhorov, $G$-Fano threefolds, I, Adv. Geom. 13 (2013), no. 3, 389–418. MR 3100917, DOI https://doi.org/10.1515/advgeom-2013-0008
- V. V. Przhiyalkovskiĭ and K. A. Shramov, Double quadrics with large automorphism groups, Tr. Mat. Inst. Steklova 294 (2016), no. Sovremennye Problemy Matematiki, Mekhaniki i Matematicheskoĭ Fiziki. II, 167–190 (Russian, with Russian summary). English version published in Proc. Steklov Inst. Math. 294 (2016), no. 1, 154–175. MR 3628499, DOI https://doi.org/10.1134/S0371968516030109
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, DOI https://doi.org/10.2969/aspm/00110131
- V. G. Sarkisov, Birational automorphisms of conic bundles, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 4, 918–945, 974 (Russian). MR 587343
- V. G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 2, 371–408, 432 (Russian). MR 651652
- V. V. Shokurov, Prym varieties: theory and applications, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 4, 785–855 (Russian). MR 712095
- V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 635–651 (Russian). MR 794958
- K. A. Shramov, On the birational rigidity and $\Bbb Q$-factoriality of a singular double covering of a quadric with branching over a divisor of degree 4, Mat. Zametki 84 (2008), no. 2, 300–311 (Russian, with Russian summary); English transl., Math. Notes 84 (2008), no. 1-2, 280–289. MR 2475055, DOI https://doi.org/10.1134/S0001434608070274
- A. S. Tikhomirov, Singularities of the theta-divisor of the intermediate Jacobian of the double ${\bf P}^{3}$ of index two, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1062–1081, 1136 (Russian). MR 675531
- Robert Varley, Weddle’s surfaces, Humbert’s curves, and a certain $4$-dimensional abelian variety, Amer. J. Math. 108 (1986), no. 4, 931–951. MR 853219, DOI https://doi.org/10.2307/2374519
- Claire Voisin, Sur la jacobienne intermédiaire du double solide d’indice deux, Duke Math. J. 57 (1988), no. 2, 629–646 (French). MR 962523, DOI https://doi.org/10.1215/S0012-7094-88-05728-6
- Claire Voisin, Unirational threefolds with no universal codimension $2$ cycle, Invent. Math. 201 (2015), no. 1, 207–237. MR 3359052, DOI https://doi.org/10.1007/s00222-014-0551-y
References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, The classification of critical points, caustics and wave fronts, translated from the Russian by Ian Porteous and Mark Reynolds, Monographs in Mathematics, vol. 82, Birkha̋user Boston, Inc., Boston, MA, 1985. MR 777682
- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95. MR 0321934, DOI https://doi.org/10.1112/plms/s3-25.1.75
- Arnaud Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 309–391 (French). MR 0472843
- Arnaud Beauville, A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc. 48 (2016), no. 2, 321–324. MR 3483069, DOI https://doi.org/10.1112/blms/bdv098
- Ivan Cheltsov, Points in projective spaces and applications, J. Differential Geom. 81 (2009), no. 3, 575–599. MR 2487601
- Ivan Cheltsov and Jihun Park, Sextic double solids, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkha̋user Boston, Inc., Boston, MA, 2010, pp. 75–132. MR 2605166, DOI https://doi.org/10.1007/978-0-8176-4934-0_4
- Ivan Cheltsov, Victor Przyjalkowski, and Constantin Shramov, Quartic double solids with icosahedral symmetry, Eur. J. Math. 2 (2016), no. 1, 96–119. MR 3454093, DOI https://doi.org/10.1007/s40879-015-0086-9
- C. Herbert Clemens, Double solids, Adv. in Math. 47 (1983), no. 2, 107–230. MR 690465, DOI https://doi.org/10.1016/0001-8708%2883%2990025-7
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 0302652, DOI https://doi.org/10.2307/1970801
- Steven Cutkosky, Elementary contractions of Gorenstein threefolds, Math. Ann. 280 (1988), no. 3, 521–525. MR 936328, DOI https://doi.org/10.1007/BF01456342
- Olivier Debarre, Sur le théorème de Torelli pour les solides doubles quartiques, Compositio Math. 73 (1990), no. 2, 161–187 (French). MR 1046736
- M. Demazure, Surfaces de del Pezzo I, II, III, IV, V, Lecture Notes in Math., 777, Springer-Verlag, 1980.
- M. M. Grinenko, Birational automorphisms of a three-dimensional double cone, Mat. Sb. 189 (1998), no. 7, 37–52 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 7-8, 991–1007. MR 1659819, DOI https://doi.org/10.1070/SM1998v189n07ABEH000336
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Kyusik Hong and Jihun Park, On factorial double solids with simple double points, J. Pure Appl. Algebra 208 (2007), no. 1, 361–369. MR 2269850, DOI https://doi.org/10.1016/j.jpaa.2006.01.003
- P. Francia, Some remarks on minimal models. I, Compositio Math. 40 (1980), no. 3, 301–313. MR 571052
- Atanas Iliev, Ludmil Katzarkov, and Victor Przyjalkowski, Double solids, categories and non-rationality, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 145–173. MR 3165018, DOI https://doi.org/10.1017/S0013091513000898
- V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1–247. MR 1668579
- Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, DOI https://doi.org/10.1007/BF01456407
- Yujiro Kawamata, Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, 93–163. MR 924674, DOI https://doi.org/10.2307/1971417
- Vik. S. Kulikov, Degenerations of $K3$ surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008–1042, 1199 (Russian). MR 0506296
- Shigefumi Mori, Flip theorem and the existence of minimal models for $3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, DOI https://doi.org/10.2307/1990969
- A. Pirutka, Varieties that are not stably rational, zero-cycles and unramified cohomology, Algebraic Geometry (Salt Lake City, UT, 2015), Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 459–484.
- Yuri Prokhorov, $G$-Fano threefolds, I, Adv. Geom. 13 (2013), no. 3, 389–418. MR 3100917, DOI https://doi.org/10.1515/advgeom-2013-0008
- V. Przyjalkowski and A. Shramov, Double quadrics with large automorphism groups, Tr. Mat. Inst. Steklova 294 (Sovremennye Problemy Matematiki, Mekhaniki i Matematicheskoĭ Fiziki. II (2016), 167–190 (Russian). MR 3628499, DOI https://doi.org/10.1134/S0371968516030109
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649
- V. G. Sarkisov, Birational automorphisms of conic bundles, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 4, 918–945, 974 (Russian). MR 587343
- V. G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 2, 371–408, 432 (Russian). MR 651652
- V. V. Shokurov, Prym varieties: theory and applications, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 4, 785–855 (Russian). MR 712095
- V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 635–651 (Russian). MR 794958
- K. A. Shramov, On the birational rigidity and $\mathbb {Q}$-factoriality of a singular double covering of a quadric with branching over a divisor of degree 4, Mat. Zametki 84 (2008), no. 2, 300–311 (Russian, with Russian summary); English transl., Math. Notes 84 (2008), no. 1-2, 280–289. MR 2475055, DOI https://doi.org/10.1134/S0001434608070274
- A. S. Tikhomirov, Singularities of the theta-divisor of the intermediate Jacobian of the double $\textbf {P}^{3}$ of index two, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1062–1081, 1136 (Russian). MR 675531
- Robert Varley, Weddle’s surfaces, Humbert’s curves, and a certain $4$-dimensional abelian variety, Amer. J. Math. 108 (1986), no. 4, 931–951. MR 853219, DOI https://doi.org/10.2307/2374519
- Claire Voisin, Sur la jacobienne intermédiaire du double solide d’indice deux, Duke Math. J. 57 (1988), no. 2, 629–646 (French). MR 962523, DOI https://doi.org/10.1215/S0012-7094-88-05728-6
- Claire Voisin, Unirational threefolds with no universal codimension $2$ cycle, Invent. Math. 201 (2015), no. 1, 207–237. MR 3359052, DOI https://doi.org/10.1007/s00222-014-0551-y
Additional Information
Ivan Cheltsov
Affiliation:
School of Mathematics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; National Research University Higher School of Economics, Laboratory of Algebraic Geometry, 6 Usacheva str., Moscow, 119048, Russia
MR Author ID:
607648
Email:
i.cheltsov@ed.ac.uk
Victor Przyjalkowski
Affiliation:
Steklov Institute of Mathematics, 8 Gubkina str., Moscow 119991, Russia; Russian Federation, Laboratory of Mirror Symmetry, NRU HSE, 6 Usacheva str., Moscow, 119048, Russia
MR Author ID:
741170
Email:
victorprz@mi-ras.ru, victorprz@gmail.com
Constantin Shramov
Affiliation:
Steklov Institute of Mathematics, 8 Gubkina str., Moscow 119991, Russia; National Research University Higher School of Economics, Laboratory of Algebraic Geometry, 6 Usacheva str., Moscow, 119048, Russia
MR Author ID:
907948
Email:
costya.shramov@gmail.com
Received by editor(s):
November 15, 2015
Received by editor(s) in revised form:
January 31, 2017
Published electronically:
December 7, 2018
Additional Notes:
The first author was supported by the Russian Academic Excellence Project “5-100” and by the Royal Society grant No. IES/R1/180205. The second author was supported by Laboratory of Mirror Symmetry NRU HSE, RF government grant, ag. No. 14.641.31.0001. The third author was supported by the Russian Academic Excellence Project “5-100”, the grants RFFI 15-01-02158, RFFI 15-01-02164, and the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”. The last two authors are also Young Russian Mathematics award winners and would like to thank its sponsors and jury
Article copyright:
© Copyright 2018
University Press, Inc.