The failure of Kodaira vanishing for Fano varieties, and terminal singularities that are not Cohen-Macaulay
Author:
Burt Totaro
Journal:
J. Algebraic Geom. 28 (2019), 751-771
DOI:
https://doi.org/10.1090/jag/724
Published electronically:
June 7, 2019
MathSciNet review:
3994312
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We show that the Kodaira vanishing theorem can fail on smooth Fano varieties of any characteristic $p>0$. Taking cones over some of these varieties, we give the first examples of terminal singularities which are not Cohen-Macaulay. By a different method, we construct a terminal singularity of dimension 3 (the lowest possible) in characteristic 2 which is not Cohen-Macaulay.
References
- M. Artin, Wildly ramified $Z/2$ actions in dimension two, Proc. Amer. Math. Soc. 52 (1975), 60–64. MR 374136, DOI https://doi.org/10.1090/S0002-9939-1975-0374136-3
- F. Bernasconi, Kawamata-Viehweg vanishing fails for log del Pezzo surfaces in char. 3, arXiv:1709.09238, 2017.
- P. Cascini and H. Tanaka, Purely log terminal threefolds with non-normal centres in characteristic two, Amer. J. Math. (to appear).
- Torsten Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 97–144. MR 972344
- Geir Ellingsrud and Tor Skjelbred, Profondeur d’anneaux d’invariants en caractéristique $p$, Compositio Math. 41 (1980), no. 2, 233–244 (French). MR 581583
- John Fogarty, On the depth of local rings of invariants of cyclic groups, Proc. Amer. Math. Soc. 83 (1981), no. 3, 448–452. MR 627666, DOI https://doi.org/10.1090/S0002-9939-1981-0627666-3
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
- William Haboush and Niels Lauritzen, Varieties of unseparated flags, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 35–57. MR 1247497, DOI https://doi.org/10.1090/conm/153/01332
- C. Hacon and J. Witaszek, On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom. (to appear), arXiv:1706.03204, 2017.
- Christopher D. Hacon and Chenyang Xu, On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc. 28 (2015), no. 3, 711–744. MR 3327534, DOI https://doi.org/10.1090/S0894-0347-2014-00809-2
- Luc Illusie, Grothendieck’s existence theorem in formal geometry, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 179–233. With a letter (in French) of Jean-Pierre Serre. MR 2223409
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Franz Kirà ly and Werner Lütkebohmert, Group actions of prime order on local normal rings, Algebra Number Theory 7 (2013), no. 1, 63–74. MR 3037890, DOI https://doi.org/10.2140/ant.2013.7.63
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950
- Sándor J. Kovács, Non-Cohen-Macaulay canonical singularities, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 251–259. MR 3832406, DOI https://doi.org/10.1090/conm/712/14349
- Niels Lauritzen, Embeddings of homogeneous spaces in prime characteristics, Amer. J. Math. 118 (1996), no. 2, 377–387. MR 1385284
- Niels Lauritzen, Schubert cycles, differential forms and $\scr D$-modules on varieties of unseparated flags, Compositio Math. 109 (1997), no. 1, 1–12. MR 1473603, DOI https://doi.org/10.1023/A%3A1000117902922
- N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime characteristic, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), no. 1, 21–25. MR 1453823, DOI https://doi.org/10.1007/BF02840470
- Zachary Maddock, Regular del Pezzo surfaces with irregularity, J. Algebraic Geom. 25 (2016), no. 3, 401–429. MR 3493588, DOI https://doi.org/10.1090/S1056-3911-2016-00650-1
- M. Raynaud, Contre-exemple au “vanishing theorem” en caractéristique $p>0$, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 273–278 (French). MR 541027
- The Stacks Project Authors, Stacks Project (2017), http://stacks.math.columbia.edu.
- Christian Wenzel, Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field, Trans. Amer. Math. Soc. 337 (1993), no. 1, 211–218. MR 1096262, DOI https://doi.org/10.1090/S0002-9947-1993-1096262-1
- L. Xiao and I. Zhukov, Ramification of higher local fields, approaches and questions, Algebra i Analiz 26 (2014), no. 5, 1–63; English transl., St. Petersburg Math. J. 26 (2015), no. 5, 695–740. MR 3408704, DOI https://doi.org/10.1090/spmj/1355
- Takehiko Yasuda, The $p$-cyclic McKay correspondence via motivic integration, Compos. Math. 150 (2014), no. 7, 1125–1168. MR 3230848, DOI https://doi.org/10.1112/S0010437X13007781
- T. Yasuda, Discrepancies of $p$-cyclic quotient varieties, J. Math. Sci. Univ. Tokyo (to appear), arXiv:1710.06044, 2017.
References
- M. Artin, Wildly ramified $Z/2$ actions in dimension two, Proc. Amer. Math. Soc. 52 (1975), 60–64. MR 0374136, DOI https://doi.org/10.2307/2040100
- F. Bernasconi, Kawamata-Viehweg vanishing fails for log del Pezzo surfaces in char. 3, arXiv:1709.09238, 2017.
- P. Cascini and H. Tanaka, Purely log terminal threefolds with non-normal centres in characteristic two, Amer. J. Math. (to appear).
- Torsten Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 97–144. MR 972344
- Geir Ellingsrud and Tor Skjelbred, Profondeur d’anneaux d’invariants en caractéristique $p$, Compositio Math. 41 (1980), no. 2, 233–244 (French). MR 581583
- John Fogarty, On the depth of local rings of invariants of cyclic groups, Proc. Amer. Math. Soc. 83 (1981), no. 3, 448–452. MR 627666, DOI https://doi.org/10.2307/2044093
- William Fulton and Joe Harris, Representation theory: A first course, Graduate Texts in Mathematics, vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991. MR 1153249
- William Haboush and Niels Lauritzen, Varieties of unseparated flags, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 35–57. MR 1247497, DOI https://doi.org/10.1090/conm/153/01332
- C. Hacon and J. Witaszek, On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom. (to appear), arXiv:1706.03204, 2017.
- Christopher D. Hacon and Chenyang Xu, On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc. 28 (2015), no. 3, 711–744. MR 3327534, DOI https://doi.org/10.1090/S0894-0347-2014-00809-2
- Luc Illusie, Grothendieck’s existence theorem in formal geometry, with a letter (in French) of Jean-Pierre Serre, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 179–233. MR 2223409
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Franz Kirà ly and Werner Lütkebohmert, Group actions of prime order on local normal rings, Algebra Number Theory 7 (2013), no. 1, 63–74. MR 3037890, DOI https://doi.org/10.2140/ant.2013.7.63
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- János Kollár, Singularities of the minimal model program, with a collaboration of Sándor Kovács, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. MR 3057950
- S. Kovács, Non-Cohen-Macaulay canonical singularities, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., Providence, RI, 2018, pp. 251–259. MR 3832406
- Niels Lauritzen, Embeddings of homogeneous spaces in prime characteristics, Amer. J. Math. 118 (1996), no. 2, 377–387. MR 1385284
- Niels Lauritzen, Schubert cycles, differential forms and $\mathcal {D}$-modules on varieties of unseparated flags, Compositio Math. 109 (1997), no. 1, 1–12. MR 1473603, DOI https://doi.org/10.1023/A%3A1000117902922
- N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime characteristic, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), no. 1, 21–25. MR 1453823, DOI https://doi.org/10.1007/BF02840470
- Zachary Maddock, Regular del Pezzo surfaces with irregularity, J. Algebraic Geom. 25 (2016), no. 3, 401–429. MR 3493588, DOI https://doi.org/10.1090/jag/650
- M. Raynaud, Contre-exemple au “vanishing theorem” en caractéristique $p>0$, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 273–278 (French). MR 541027
- The Stacks Project Authors, Stacks Project (2017), http://stacks.math.columbia.edu.
- Christian Wenzel, Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field, Trans. Amer. Math. Soc. 337 (1993), no. 1, 211–218. MR 1096262, DOI https://doi.org/10.2307/2154318
- L. Xiao and I. Zhukov, Ramification of higher local fields, approaches and questions, Algebra i Analiz 26 (2014), no. 5, 1–63; English transl., St. Petersburg Math. J. 26 (2015), no. 5, 695–740. MR 3408704, DOI https://doi.org/10.1090/spmj/1355
- Takehiko Yasuda, The $p$-cyclic McKay correspondence via motivic integration, Compos. Math. 150 (2014), no. 7, 1125–1168. MR 3230848, DOI https://doi.org/10.1112/S0010437X13007781
- T. Yasuda, Discrepancies of $p$-cyclic quotient varieties, J. Math. Sci. Univ. Tokyo (to appear), arXiv:1710.06044, 2017.
Additional Information
Burt Totaro
Affiliation:
Department of Mathematics, University of California Los Angeles, Box 951555, Los Angeles, California 90095-1555
MR Author ID:
272212
Email:
totaro@math.ucla.edu
Received by editor(s):
October 17, 2017
Received by editor(s) in revised form:
March 21, 2018
Published electronically:
June 7, 2019
Additional Notes:
This work was supported by NSF grant DMS-1701237.
Article copyright:
© Copyright 2019
University Press, Inc.