Parallel transport for vector bundles on $p$-adic varieties
Authors:
Christopher Deninger and Annette Werner
Journal:
J. Algebraic Geom. 29 (2020), 1-52
DOI:
https://doi.org/10.1090/jag/747
Published electronically:
September 26, 2019
MathSciNet review:
4028065
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We develop a theory of étale parallel transport for vector bundles with numerically flat reduction on a $p$-adic variety. This construction is compatible with natural operations on vector bundles, Galois equivariant and functorial with respect to morphisms of varieties. In particular, it provides a continuous $p$-adic representation of the étale fundamental group for every vector bundle with numerically flat reduction. The results in the present paper generalize previous work by the authors on curves. They can be seen as a $p$-adic analog of higher-dimensional generalizations of the classical Narasimhan-Seshadri correspondence on complex varieties. Moreover, they provide new insights into Faltings’ $p$-adic Simpson correspondence between small Higgs bundles and small generalized representations by establishing a class of vector bundles with vanishing Higgs field giving rise to actual (not only generalized) representations.
References
- Ahmed Abbes, Michel Gros, and Takeshi Tsuji, The $p$-adic Simpson correspondence, Annals of Mathematics Studies, vol. 193, Princeton University Press, Princeton, NJ, 2016. MR 3444777
- Bhargav Bhatt, $p$-divisibility for coherent cohomology, Forum Math. Sigma 3 (2015), Paper No. e15, 27. MR 3482261, DOI https://doi.org/10.1017/fms.2015.11
- Bhargav Bhatt and Andrew Snowden, Refined Alterations, 2016, http://www-personal.umich.edu/$\sim$bhattb/math/alterationsepsilon.pdf.
- Edward Bierstone and Pierre D. Milman, Functoriality in resolution of singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 609–639. MR 2426359, DOI https://doi.org/10.2977/prims/1210167338
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
- Robert F. Coleman, Reciprocity laws on curves, Compositio Math. 72 (1989), no. 2, 205–235. MR 1030142
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
- A. Johan de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621. MR 1450427
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), no. 2, 295–345. MR 1257325
- Christopher Deninger, Representations attached to vector bundles on curves over finite and $p$-adic fields, a comparison, Münster J. Math. 3 (2010), 29–41. MR 2775354
- Christopher Deninger and Annette Werner, Vector bundles on $p$-adic curves and parallel transport, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 4, 553–597 (English, with English and French summaries). MR 2172951, DOI https://doi.org/10.1016/j.ansens.2005.05.002
- Christopher Deninger and Annette Werner, Vector bundles on $p$-adic curves and parallel transport II, Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Adv. Stud. Pure Math., vol. 58, Math. Soc. Japan, Tokyo, 2010, pp. 1–26. MR 2676155, DOI https://doi.org/10.2969/aspm/05810001
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI https://doi.org/10.1112/plms/s3-50.1.1
- Gerd Faltings, A $p$-adic Simpson correspondence, Adv. Math. 198 (2005), no. 2, 847–862. MR 2183394, DOI https://doi.org/10.1016/j.aim.2005.05.026
- Gerd Faltings, A $p$-adic Simpson correspondence II: small representations, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1241–1264. MR 2918160, DOI https://doi.org/10.4310/PAMQ.2011.v7.n4.a8
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 163911
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 69–190. Lecture Notes in Mathematics, Vol. 350. MR 0447119
- Shun-ichi Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), no. 1, 285–302. MR 1145334, DOI https://doi.org/10.1080/00927879208824340
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI https://doi.org/10.7146/math.scand.a-12001
- Guitang Lan, Mao Sheng, and Kang Zuo, Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 10, 3053–3112. MR 3994100, DOI https://doi.org/10.4171/JEMS/897
- Herbert Lange and Ulrich Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z. 156 (1977), no. 1, 73–83 (German). MR 472827, DOI https://doi.org/10.1007/BF01215129
- Adrian Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), no. 1, 251–276. MR 2051393, DOI https://doi.org/10.4007/annals.2004.159.251
- Adrian Langer, On the S-fundamental group scheme, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, 2077–2119 (2012) (English, with English and French summaries). MR 2961849, DOI https://doi.org/10.5802/aif.2667
- Adrian Langer, On the S-fundamental group scheme. II, J. Inst. Math. Jussieu 11 (2012), no. 4, 835–854. MR 2979824, DOI https://doi.org/10.1017/S1474748012000011
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Qing Liu, Stable reduction of finite covers of curves, Compos. Math. 142 (2006), no. 1, 101–118. MR 2196764, DOI https://doi.org/10.1112/S0010437X05001557
- Qing Liu and Dino Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), no. 1, 61–102. MR 1705977, DOI https://doi.org/10.1023/A%3A1001141725199
- Ruochuan Liu and Xinwen Zhu, Rigidity and a Riemann-Hilbert correspondence for $p$-adic local systems, Invent. Math. 207 (2017), no. 1, 291–343. MR 3592758, DOI https://doi.org/10.1007/s00222-016-0671-7
- W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), no. 1, 95–111. MR 1226600, DOI https://doi.org/10.1007/BF03026540
- J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR 1702278
- V. B. Mehta and A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), no. 1, 163–172. MR 751136, DOI https://doi.org/10.1007/BF01389140
- Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 2, 73–122. MR 682517, DOI https://doi.org/10.1007/BF02967978
- A. Ogus and V. Vologodsky, Nonabelian Hodge theory in characteristic $p$, Publ. Math. Inst. Hautes Études Sci. 106 (2007), 1–138. MR 2373230, DOI https://doi.org/10.1007/s10240-007-0010-z
- M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76 (French). MR 282993
- M. Raynaud, Flat modules in algebraic geometry, Compositio Math. 24 (1972), 11–31. MR 302645
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Takeshi Saito, Wild ramification and the characteristic cycle of an $l$-adic sheaf, J. Inst. Math. Jussieu 8 (2009), no. 4, 769–829. MR 2540880, DOI https://doi.org/10.1017/S1474748008000364
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076
- The Stacks Project, http://stacks.math.columbia.edu/download/book.pdf.
- S. Subramanian, Strongly semistable bundles on a curve over a finite field, Arch. Math. (Basel) 89 (2007), no. 1, 68–72. MR 2322782, DOI https://doi.org/10.1007/s00013-007-1995-8
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI https://doi.org/10.1002/cpa.3160390714
- Daxin Xu, Transport parallèle et correspondance de Simpson $p$-adique, Forum Math. Sigma 5 (2017), Paper No. e13, 127 (French, with English and French summaries). MR 3663409, DOI https://doi.org/10.1017/fms.2017.7
References
- Ahmed Abbes, Michel Gros, and Takeshi Tsuji, The $p$-adic Simpson correspondence, Annals of Mathematics Studies, vol. 193, Princeton University Press, Princeton, NJ, 2016. MR 3444777
- Bhargav Bhatt, $p$-divisibility for coherent cohomology, Forum Math. Sigma 3 (2015), e15, 27. MR 3482261, DOI https://doi.org/10.1017/fms.2015.11
- Bhargav Bhatt and Andrew Snowden, Refined Alterations, 2016, http://www-personal.umich.edu/$\sim$bhattb/math/alterationsepsilon.pdf.
- Edward Bierstone and Pierre D. Milman, Functoriality in resolution of singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 609–639. MR 2426359, DOI https://doi.org/10.2977/prims/1210167338
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
- Robert F. Coleman, Reciprocity laws on curves, Compositio Math. 72 (1989), no. 2, 205–235. MR 1030142
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
- A. Johan de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621. MR 1450427
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), no. 2, 295–345. MR 1257325
- Christopher Deninger, Representations attached to vector bundles on curves over finite and $p$-adic fields, a comparison, Münster J. Math. 3 (2010), 29–41. MR 2775354
- Christopher Deninger and Annette Werner, Vector bundles on $p$-adic curves and parallel transport, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 4, 553–597 (English, with English and French summaries). MR 2172951, DOI https://doi.org/10.1016/j.ansens.2005.05.002
- Christopher Deninger and Annette Werner, Vector bundles on $p$-adic curves and parallel transport II, Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Adv. Stud. Pure Math., vol. 58, Math. Soc. Japan, Tokyo, 2010, pp. 1–26. MR 2676155, DOI https://doi.org/10.2969/aspm/05810001
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI https://doi.org/10.1112/plms/s3-50.1.1
- Gerd Faltings, A $p$-adic Simpson correspondence, Adv. Math. 198 (2005), no. 2, 847–862. MR 2183394, DOI https://doi.org/10.1016/j.aim.2005.05.026
- Gerd Faltings, A $p$-adic Simpson correspondence II: small representations, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1241–1264. MR 2918160, DOI https://doi.org/10.4310/PAMQ.2011.v7.n4.a8
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, with an appendix by David Mumford, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. MR 1083353
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 0163911
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255. MR 0217086
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR 0447119
- Shun-ichi Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), no. 1, 285–302. MR 1145334, DOI https://doi.org/10.1080/00927879208824340
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI https://doi.org/10.7146/math.scand.a-12001
- Guitang Lan, Mao Sheng, and Kang Zuo, Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 10, 3053–3112. MR 3994100, DOI https://doi.org/10.4171/JEMS/897
- Herbert Lange and Ulrich Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z. 156 (1977), no. 1, 73–83 (German). MR 0472827, DOI https://doi.org/10.1007/BF01215129
- Adrian Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), no. 1, 251–276. MR 2051393, DOI https://doi.org/10.4007/annals.2004.159.251
- Adrian Langer, On the S-fundamental group scheme, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, 2077–2119 (2012) (English, with English and French summaries). MR 2961849, DOI https://doi.org/10.5802/aif.2667
- Adrian Langer, On the S-fundamental group scheme. II, J. Inst. Math. Jussieu 11 (2012), no. 4, 835–854. MR 2979824, DOI https://doi.org/10.1017/S1474748012000011
- Qing Liu, Algebraic geometry and arithmetic curves, translated from the French by Reinie Erné, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. MR 1917232
- Qing Liu, Stable reduction of finite covers of curves, Compos. Math. 142 (2006), no. 1, 101–118. MR 2196764, DOI https://doi.org/10.1112/S0010437X05001557
- Qing Liu and Dino Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), no. 1, 61–102. MR 1705977, DOI https://doi.org/10.1023/A%3A1001141725199
- Ruochuan Liu and Xinwen Zhu, Rigidity and a Riemann-Hilbert correspondence for $p$-adic local systems, Invent. Math. 207 (2017), no. 1, 291–343. MR 3592758, DOI https://doi.org/10.1007/s00222-016-0671-7
- W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), no. 1, 95–111. MR 1226600, DOI https://doi.org/10.1007/BF03026540
- J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR 1702278
- V. B. Mehta and A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), no. 1, 163–172. MR 751136, DOI https://doi.org/10.1007/BF01389140
- Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 2, 73–122. MR 682517, DOI https://doi.org/10.1007/BF02967978
- A. Ogus and V. Vologodsky, Nonabelian Hodge theory in characteristic $p$, Publ. Math. Inst. Hautes Études Sci. 106 (2007), 1–138. MR 2373230, DOI https://doi.org/10.1007/s10240-007-0010-z
- M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76 (French). MR 0282993
- M. Raynaud, Flat modules in algebraic geometry, Compositio Math. 24 (1972), 11–31. MR 0302645
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Takeshi Saito, Wild ramification and the characteristic cycle of an $l$-adic sheaf, J. Inst. Math. Jussieu 8 (2009), no. 4, 769–829. MR 2540880, DOI https://doi.org/10.1017/S1474748008000364
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076
- The Stacks Project, http://stacks.math.columbia.edu/download/book.pdf.
- S. Subramanian, Strongly semistable bundles on a curve over a finite field, Arch. Math. (Basel) 89 (2007), no. 1, 68–72. MR 2322782, DOI https://doi.org/10.1007/s00013-007-1995-8
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Frontiers of the mathematical sciences: 1985 (New York, 1985), Comm. Pure Appl. Math. 39 (1986), S, suppl., S257–S293. MR 861491, DOI https://doi.org/10.1002/cpa.3160390714
- Daxin Xu, Transport parallèle et correspondance de Simpson $p$-adique, Forum Math. Sigma 5 (2017), e13, 127 (French, with English and French summaries). MR 3663409, DOI https://doi.org/10.1017/fms.2017.7
Additional Information
Christopher Deninger
Affiliation:
Department of Mathematics, University of Münster, Einsteinstr. 62, 48149 Münster, Germany
MR Author ID:
56735
Email:
c.deninger@uni-muenster.de
Annette Werner
Affiliation:
Institute of Mathematics, Goethe University Frankfurt, Robert-Mayer-Str. 6-8, 60325 Frankfurt am, Germany
MR Author ID:
612980
Email:
werner@math.uni-frankfurt.de
Received by editor(s):
August 3, 2017
Received by editor(s) in revised form:
May 20, 2019, and May 27, 2019
Published electronically:
September 26, 2019
Article copyright:
© Copyright 2019
University Press, Inc.