On equivalent conjectures for minimal log discrepancies on smooth threefolds
Author:
Masayuki Kawakita
Journal:
J. Algebraic Geom. 30 (2021), 97-149
DOI:
https://doi.org/10.1090/jag/757
Published electronically:
June 2, 2020
MathSciNet review:
4233179
Full-text PDF
Abstract |
References |
Additional Information
Abstract: On smooth varieties, the ACC for minimal log discrepancies is equivalent to the boundedness of the log discrepancy of some divisor which computes the minimal log discrepancy. In dimension three, we reduce it to the case when the boundary is the product of a canonical part and the maximal ideal to some power. We prove the reduced assertion when the log canonical threshold of the maximal ideal is either at most one-half or at least one.
References
- S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1617523
- Valery Alexeev, Two two-dimensional terminations, Duke Math. J. 69 (1993), no. 3, 527–545. MR 1208810, DOI https://doi.org/10.1215/S0012-7094-93-06922-0
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI https://doi.org/10.1090/S0894-0347-09-00649-3
- C. Birkar and V. V. Shokurov, Mld’s vs thresholds and flips, J. Reine Angew. Math. 638 (2010), 209–234. MR 2595341, DOI https://doi.org/10.1515/CRELLE.2010.008
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J. 152 (2010), no. 1, 93–114. MR 2643057, DOI https://doi.org/10.1215/00127094-2010-008
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 221–257. MR 2779474, DOI https://doi.org/10.4171/007-1/10
- Tommaso de Fernex and Mircea Mustaţă, Limits of log canonical thresholds, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 3, 491–515 (English, with English and French summaries). MR 2543330, DOI https://doi.org/10.24033/asens.2100
- Lawrence Ein and Mircea Mustaţǎ, Inversion of adjunction for local complete intersection varieties, Amer. J. Math. 126 (2004), no. 6, 1355–1365. MR 2102399
- Lawrence Ein, Mircea Mustaţă, and Takehiko Yasuda, Jet schemes, log discrepancies and inversion of adjunction, Invent. Math. 153 (2003), no. 3, 519–535. MR 2000468, DOI https://doi.org/10.1007/s00222-003-0298-3
- Osamu Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789. MR 2832805, DOI https://doi.org/10.2977/PRIMS/50
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI https://doi.org/10.2307/1970547
- Shihoko Ishii, Introduction to singularities, Springer, Tokyo, 2018. Second edition of [ MR3288750]. MR 3838338
- Masayuki Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math. 145 (2001), no. 1, 105–119. MR 1839287, DOI https://doi.org/10.1007/s002220100144
- Masayuki Kawakita, General elephants of three-fold divisorial contractions, J. Amer. Math. Soc. 16 (2003), no. 2, 331–362. MR 1949163, DOI https://doi.org/10.1090/S0894-0347-02-00416-2
- Masayuki Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), no. 1, 129–133. MR 2264806, DOI https://doi.org/10.1007/s00222-006-0008-z
- Masayuki Kawakita, Ideal-adic semi-continuity of minimal log discrepancies on surfaces, Michigan Math. J. 62 (2013), no. 2, 443–447. MR 3079272, DOI https://doi.org/10.1307/mmj/1370870381
- Masayuki Kawakita, Discreteness of log discrepancies over log canonical triples on a fixed pair, J. Algebraic Geom. 23 (2014), no. 4, 765–774. MR 3263668, DOI https://doi.org/10.1090/S1056-3911-2014-00630-5
- Masayuki Kawakita, A connectedness theorem over the spectrum of a formal power series ring, Internat. J. Math. 26 (2015), no. 11, 1550088, 27. MR 3413983, DOI https://doi.org/10.1142/S0129167X15500883
- Masayuki Kawakita, Divisors computing the minimal log discrepancy on a smooth surface, Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 1, 187–192. MR 3656356, DOI https://doi.org/10.1017/S0305004116001043
- Yujiro Kawamata, Divisorial contractions to $3$-dimensional terminal quotient singularities, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 241–246. MR 1463182
- J. Kollár, Which powers of holomorphic functions are integrable? arXiv:0805.0756, 2008.
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950
- J. Kollár (ed.), Flips and abundance for algebraic threefolds, A summer seminar at the University of Utah, 1991, Astérisque 211 (1992).
- János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787
- J. McKernan, talk on a joint work with P. Cascini, MSRI workshop, 6 May 2013.
- Mircea Mustaţă and Yusuke Nakamura, A boundedness conjecture for minimal log discrepancies on a fixed germ, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 287–306. MR 3832408, DOI https://doi.org/10.1090/conm/712/14351
- V. V. Shokurov, Problems about Fano varieties, Birational geometry of algebraic varieties. Open problems, the XXIIIrd International Symposium, Division of Mathematics, the Taniguchi Foundation, Katata, 1988, pp. 30–32.
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI https://doi.org/10.1070/IM1993v040n01ABEH001862
- D. A. Stepanov, Smooth three-dimensional canonical thresholds, Mat. Zametki 90 (2011), no. 2, 285–299 (Russian, with Russian summary); English transl., Math. Notes 90 (2011), no. 1-2, 265–278. MR 2918444, DOI https://doi.org/10.1134/S0001434611070261
References
- S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1617523
- Valery Alexeev, Two two-dimensional terminations, Duke Math. J. 69 (1993), no. 3, 527–545. MR 1208810, DOI https://doi.org/10.1215/S0012-7094-93-06922-0
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI https://doi.org/10.1090/S0894-0347-09-00649-3
- C. Birkar and V. V. Shokurov, Mld’s vs thresholds and flips, J. Reine Angew. Math. 638 (2010), 209–234. MR 2595341, DOI https://doi.org/10.1515/CRELLE.2010.008
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J. 152 (2010), no. 1, 93–114. MR 2643057, DOI https://doi.org/10.1215/00127094-2010-008
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 221–257. MR 2779474, DOI https://doi.org/10.4171/007-1/10
- Tommaso de Fernex and Mircea Mustaţă, Limits of log canonical thresholds, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 3, 491–515 (English, with English and French summaries). MR 2543330, DOI https://doi.org/10.24033/asens.2100
- Lawrence Ein and Mircea Mustaţǎ, Inversion of adjunction for local complete intersection varieties, Amer. J. Math. 126 (2004), no. 6, 1355–1365. MR 2102399
- Lawrence Ein, Mircea Mustaţă, and Takehiko Yasuda, Jet schemes, log discrepancies and inversion of adjunction, Invent. Math. 153 (2003), no. 3, 519–535. MR 2000468, DOI https://doi.org/10.1007/s00222-003-0298-3
- Osamu Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789. MR 2832805, DOI https://doi.org/10.2977/PRIMS/50
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI https://doi.org/10.2307/1970547
- Shihoko Ishii, Introduction to singularities, Second edition of [ MR3288750], Springer, Tokyo, 2018. MR 3838338
- Masayuki Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math. 145 (2001), no. 1, 105–119. MR 1839287, DOI https://doi.org/10.1007/s002220100144
- Masayuki Kawakita, General elephants of three-fold divisorial contractions, J. Amer. Math. Soc. 16 (2003), no. 2, 331–362. MR 1949163, DOI https://doi.org/10.1090/S0894-0347-02-00416-2
- Masayuki Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), no. 1, 129–133. MR 2264806, DOI https://doi.org/10.1007/s00222-006-0008-z
- Masayuki Kawakita, Ideal-adic semi-continuity of minimal log discrepancies on surfaces, Michigan Math. J. 62 (2013), no. 2, 443–447. MR 3079272, DOI https://doi.org/10.1307/mmj/1370870381
- Masayuki Kawakita, Discreteness of log discrepancies over log canonical triples on a fixed pair, J. Algebraic Geom. 23 (2014), no. 4, 765–774. MR 3263668, DOI https://doi.org/10.1090/S1056-3911-2014-00630-5
- Masayuki Kawakita, A connectedness theorem over the spectrum of a formal power series ring, Internat. J. Math. 26 (2015), no. 11, 1550088, 27. MR 3413983, DOI https://doi.org/10.1142/S0129167X15500883
- Masayuki Kawakita, Divisors computing the minimal log discrepancy on a smooth surface, Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 1, 187–192. MR 3656356, DOI https://doi.org/10.1017/S0305004116001043
- Yujiro Kawamata, Divisorial contractions to $3$-dimensional terminal quotient singularities, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 241–246. MR 1463182
- J. Kollár, Which powers of holomorphic functions are integrable? arXiv:0805.0756, 2008.
- János Kollár, Singularities of the minimal model program, with a collaboration of Sándor Kovács, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. MR 3057950
- J. Kollár (ed.), Flips and abundance for algebraic threefolds, A summer seminar at the University of Utah, 1991, Astérisque 211 (1992).
- János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787
- J. McKernan, talk on a joint work with P. Cascini, MSRI workshop, 6 May 2013.
- Mircea Mustaţă and Yusuke Nakamura, A boundedness conjecture for minimal log discrepancies on a fixed germ, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., Providence, RI, 2018, pp. 287–306. MR 3832408, DOI https://doi.org/10.1090/conm/712/14351
- V. V. Shokurov, Problems about Fano varieties, Birational geometry of algebraic varieties. Open problems, the XXIIIrd International Symposium, Division of Mathematics, the Taniguchi Foundation, Katata, 1988, pp. 30–32.
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI https://doi.org/10.1070/IM1993v040n01ABEH001862
- D. A. Stepanov, Smooth three-dimensional canonical thresholds, Mat. Zametki 90 (2011), no. 2, 285–299 (Russian, with Russian summary); English transl., Math. Notes 90 (2011), no. 1-2, 265–278. MR 2918444, DOI https://doi.org/10.1134/S0001434611070261
Additional Information
Masayuki Kawakita
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
MR Author ID:
680001
Email:
masayuki@kurims.kyoto-u.ac.jp
Received by editor(s):
May 16, 2018
Published electronically:
June 2, 2020
Additional Notes:
The author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 16K05099.
Article copyright:
© Copyright 2020
University Press, Inc.