Compactification of Drinfeld moduli spaces as moduli spaces of $A$-reciprocal maps and consequences for Drinfeld modular forms
Author:
Richard Pink
Journal:
J. Algebraic Geom. 30 (2021), 477-527
DOI:
https://doi.org/10.1090/jag/772
Published electronically:
December 17, 2020
MathSciNet review:
4283550
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We construct a compactification of the moduli space of Drinfeld modules of rank $r$ and level $N$ as a moduli space of $A$-reciprocal maps. This is closely related to the Satake compactification but not exactly the same. The construction involves some technical assumptions on $N$ that are satisfied for a cofinal set of ideals $N$. In the special case where $A=\mathbb {F}_q[t]$ and $N=(t^n)$, we obtain a presentation for the graded ideal of Drinfeld cusp forms of level $N$ and all weights and can deduce a dimension formula for the space of cusp forms of any weight. We expect similar results in general, but the proof will require more ideas.
References
- D. J. Basson, F. Breuer, R. Pink, Analytic Drinfeld Modular Forms of Arbitrary Rank, Part I: Analytic Theory. Preprint May 2018 24p.
- D. J. Basson, F. Breuer, R. Pink, Analytic Drinfeld Modular Forms of Arbitrary Rank, Part II: Comparison with Algebraic Theory. Preprint May 2018 29p.
- D. J. Basson, F. Breuer, R. Pink, Analytic Drinfeld Modular Forms of Arbitrary Rank, Part III: Examples. Preprint May 2018 30p.
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1985 (French). Algèbre commutative. Chapitres 5 à 7. [Commutative algebra. Chapters 5–7]; Reprint. MR 782297
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 0384707
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Ernst-Ulrich Gekeler, Drinfel′d modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338, DOI 10.1007/BFb0072692
- Ernst-Ulrich Gekeler, On power sums of polynomials over finite fields, J. Number Theory 30 (1988), no. 1, 11–26. MR 960231, DOI 10.1016/0022-314X(88)90023-6
- E.-U. Gekeler, On Drinfeld modular forms of higher rank IV: Modular forms with level, https://arxiv.org/abs/1811.09460 (2018).
- David Goss, The algebraist’s upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391–415. MR 561525, DOI 10.1090/S0273-0979-1980-14751-5
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- S. Häberli, Satake compactification of analytic Drinfeld modular varieties, PhD thesis, ETH Zürich 2018.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Richard Pink, Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscripta Math. 140 (2013), no. 3-4, 333–361. MR 3019130, DOI 10.1007/s00229-012-0544-3
- Richard Pink and Simon Schieder, Compactification of a Drinfeld period domain over a finite field, J. Algebraic Geom. 23 (2014), no. 2, 201–243. MR 3166390, DOI 10.1090/S1056-3911-2013-00605-0
References
- D. J. Basson, F. Breuer, R. Pink, Analytic Drinfeld Modular Forms of Arbitrary Rank, Part I: Analytic Theory. Preprint May 2018 24p.
- D. J. Basson, F. Breuer, R. Pink, Analytic Drinfeld Modular Forms of Arbitrary Rank, Part II: Comparison with Algebraic Theory. Preprint May 2018 29p.
- D. J. Basson, F. Breuer, R. Pink, Analytic Drinfeld Modular Forms of Arbitrary Rank, Part III: Examples. Preprint May 2018 30p.
- Nicolas Bourbaki, Éléments de mathématique: Algèbre commutative. Chapitres 5 à 7. [Commutative algebra. Chapters 5–7]; Reprint, Masson, Paris, 1985 (French). MR 782297
- Winfried Bruns and Jürgen Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 0384707
- David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Ernst-Ulrich Gekeler, Drinfel′d modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338, DOI 10.1007/BFb0072692
- Ernst-Ulrich Gekeler, On power sums of polynomials over finite fields, J. Number Theory 30 (1988), no. 1, 11–26. MR 960231, DOI 10.1016/0022-314X(88)90023-6
- E.-U. Gekeler, On Drinfeld modular forms of higher rank IV: Modular forms with level, https://arxiv.org/abs/1811.09460 (2018).
- David Goss, The algebraist’s upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391–415. MR 561525, DOI 10.1090/S0273-0979-1980-14751-5
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- S. Häberli, Satake compactification of analytic Drinfeld modular varieties, PhD thesis, ETH Zürich 2018.
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Richard Pink, Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscripta Math. 140 (2013), no. 3-4, 333–361. MR 3019130, DOI 10.1007/s00229-012-0544-3
- Richard Pink and Simon Schieder, Compactification of a Drinfeld period domain over a finite field, J. Algebraic Geom. 23 (2014), no. 2, 201–243. MR 3166390, DOI 10.1090/S1056-3911-2013-00605-0
Additional Information
Richard Pink
Affiliation:
Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
MR Author ID:
139765
Email:
pink@math.ethz.ch
Received by editor(s):
March 7, 2019
Received by editor(s) in revised form:
January 30, 2020, and May 14, 2020
Published electronically:
December 17, 2020
Dedicated:
In memory of David Goss
Article copyright:
© Copyright 2020
University Press, Inc.