Extension of cohomology classes and holomorphic sections defined on subvarieties
Authors:
Xiangyu Zhou and Langfeng Zhu
Journal:
J. Algebraic Geom. 31 (2022), 137-179
DOI:
https://doi.org/10.1090/jag/766
Published electronically:
September 6, 2021
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this paper, we obtain two extension theorems for cohomology classes and holomorphic sections defined on analytic subvarieties, which are defined as the supports of the quotient sheaves of multiplier ideal sheaves of quasi-plurisubharmonic functions with arbitrary singularities. The first result gives a positive answer to a question posed by Cao-Demailly-Matsumura and unifies a few well-known injectivity theorems. The second result generalizes and optimizes a general $L^2$ extension theorem obtained by Demailly.
References
- Aldo Andreotti and Arnold Kas, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 187–263. MR 425160
- Bo Berndtsson and László Lempert, A proof of the Ohsawa-Takegoshi theorem with sharp estimates, J. Math. Soc. Japan 68 (2016), no. 4, 1461–1472. MR 3564439, DOI 10.2969/jmsj/06841461
- Zbigniew Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), no. 1, 149–158. MR 3069114, DOI 10.1007/s00222-012-0423-2
- Junyan Cao, Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 (2014), no. 11, 1869–1902. MR 3279260, DOI 10.1112/S0010437X14007398
- Junyan Cao, Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and applications, Complex and symplectic geometry, Springer INdAM Ser., vol. 21, Springer, Cham, 2017, pp. 19–38. MR 3645303
- JunYan Cao, Jean-Pierre Demailly, and Shin-ichi Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math. 60 (2017), no. 6, 949–962. MR 3647124, DOI 10.1007/s11425-017-9066-0
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650, DOI 10.24033/asens.1434
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI 10.1007/BFb0094512
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 1–148. MR 1919457
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Jean-Pierre Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I, Adv. Lect. Math. (ALM), vol. 35, Int. Press, Somerville, MA, 2016, pp. 191–222. MR 3525916
- Jean-Pierre Demailly, Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties, Geometric complex analysis, Springer Proc. Math. Stat., vol. 246, Springer, Singapore, 2018, pp. 97–113. MR 3923220, DOI 10.1007/978-981-13-1672-2_{8}
- J.-P. Demailly, Complex analytic and differential geometry, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- Jean-Pierre Demailly, Christopher D. Hacon, and Mihai Păun, Extension theorems, non-vanishing and the existence of good minimal models, Acta Math. 210 (2013), no. 2, 203–259. MR 3070567, DOI 10.1007/s11511-013-0094-x
- Ichiro Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 59–68. MR 1215279
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013), 149–174. MR 3181493, DOI 10.1515/crelle-2012-0036
- O. Fujino and S. Matsumura, Injectivity theorem for pseudo-effective line bundles and its applications, arXiv:1605.02284v2 (2016).
- Yoshinori Gongyo and Shin-ichi Matsumura, Versions of injectivity and extension theorems, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 479–502 (English, with English and French summaries). MR 3621435, DOI 10.24033/asens.2325
- Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 (German). MR 121814
- Qi’an Guan and Xiangyu Zhou, Optimal constant problem in the $L^2$ extension theorem, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 753–756 (English, with English and French summaries). MR 2981347, DOI 10.1016/j.crma.2012.08.007
- Qi’An Guan and XiangYu Zhou, Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa, Sci. China Math. 58 (2015), no. 1, 35–59. MR 3296330, DOI 10.1007/s11425-014-4946-4
- Qi’an Guan and Xiangyu Zhou, A solution of an $L^2$ extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208. MR 3296822, DOI 10.4007/annals.2015.181.3.6
- Qi’an Guan and Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. MR 3418526, DOI 10.4007/annals.2015.182.2.5
- Qi’an Guan and Xiangyu Zhou, Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math. 202 (2015), no. 2, 635–676. MR 3418242, DOI 10.1007/s00222-014-0575-3
- Qi’An Guan and XiangYu Zhou, Strong openness of multiplier ideal sheaves and optimal $L^2$ extension, Sci. China Math. 60 (2017), no. 6, 967–976. MR 3647126, DOI 10.1007/s11425-017-9055-5
- Qi’an Guan, Xiangyu Zhou, and Langfeng Zhu, On the Ohsawa-Takegoshi $L^2$ extension theorem and the twisted Bochner-Kodaira identity, C. R. Math. Acad. Sci. Paris 349 (2011), no. 13-14, 797–800 (English, with English and French summaries). MR 2825944, DOI 10.1016/j.crma.2011.06.001
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Christopher Hacon, Mihnea Popa, and Christian Schnell, Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Păun, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 143–195. MR 3832403, DOI 10.1090/conm/712/14346
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- G. Hosono, The optimal jet $L^2$ extension of Ohsawa-Takegoshi type, arXiv:1706.08725v2 (2017).
- Christer O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), no. 3, 295–304 (French, with English summary). MR 544525, DOI 10.24033/bsmf.1898
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351
- Shin-ichi Matsumura, A Nadel vanishing theorem via injectivity theorems, Math. Ann. 359 (2014), no. 3-4, 785–802. MR 3231016, DOI 10.1007/s00208-014-1018-6
- Shin-ichi Matsumura, A Nadel vanishing theorem for metrics with minimal singularities on big line bundles, Adv. Math. 280 (2015), 188–207. MR 3350216, DOI 10.1016/j.aim.2015.03.019
- Shin-ichi Matsumura, An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, J. Algebraic Geom. 27 (2018), no. 2, 305–337. MR 3764278, DOI 10.1090/jag/687
- S. Matsumura, Injectivity theorems with multiplier ideal sheaves for higher direct images under Kähler morphisms, arXiv:1607.05554v2 (2016).
- Xiankui Meng and Xiangyu Zhou, Pseudo-effective line bundles over holomorphically convex manifolds, J. Algebraic Geom. 28 (2019), no. 1, 169–200. MR 3875365, DOI 10.1090/jag/714
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- Takeo Ohsawa, On the extension of $L^2$ holomorphic functions. V. Effects of generalization, Nagoya Math. J. 161 (2001), 1–21. MR 1820210, DOI 10.1017/S0027763000022108
- Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR 2153535, DOI 10.2977/prims/1145475223
- Takeo Ohsawa, $L^2$ approaches in several complex variables, Springer Monographs in Mathematics, Springer, Tokyo, 2015. Development of Oka-Cartan theory by $L^2$ estimates for the $\overline \partial$ operator. MR 3443603, DOI 10.1007/978-4-431-55747-0
- Takeo Ohsawa, On the extension of $L^2$ holomorphic functions VIII—a remark on a theorem of Guan and Zhou, Internat. J. Math. 28 (2017), no. 9, 1740005, 12. MR 3690414, DOI 10.1142/S0129167X17400055
- Takeo Ohsawa and Kensh\B{o} Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI 10.1007/BF01166457
- Mihai Păun and Shigeharu Takayama, Positivity of twisted relative pluricanonical bundles and their direct images, J. Algebraic Geom. 27 (2018), no. 2, 211–272. MR 3764276, DOI 10.1090/jag/702
- David Prill, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80. MR 296350, DOI 10.1007/BF01110367
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3, 661–673. MR 1660941, DOI 10.1007/s002220050276
- Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 223–277. MR 1922108
- Yum-Tong Siu, Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical bundles, Finite or infinite dimensional complex analysis and applications, Adv. Complex Anal. Appl., vol. 2, Kluwer Acad. Publ., Dordrecht, 2004, pp. 45–83. MR 2058399
- Yum-Tong Siu, Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A 48 (2005), no. suppl., 1–31. MR 2156488, DOI 10.1007/bf02884693
- Henri Skoda, Morphismes surjectifs de fibrés vectoriels semi-positifs, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 577–611 (French). MR 533068, DOI 10.24033/asens.1357
- Kensh\B{o} Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), no. 3, 389–416. MR 1354997, DOI 10.1007/BF01460997
- S. G. Tankeev, $n$-dimensional canonically polarized varieties, and varieties of basic type, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 31–44 (Russian). MR 0277528
- H. Tsuji, Extension of log pluricanonical forms from subvarieties, arXiv:0709.2710v2 (2007).
- Xiangyu Zhou and Langfeng Zhu, Ohsawa-Takegoshi $L^2$ extension theorem: revisited, Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1, vol. 2, Amer. Math. Soc., Providence, RI, 2012, pp. 475–490. MR 2908088
- Xiangyu Zhou and Langfeng Zhu, Regularization of quasi-plurisubharmonic functions on complex manifolds, Sci. China Math. 61 (2018), no. 7, 1163–1174. MR 3817169, DOI 10.1007/s11425-018-9289-4
- Xiangyu Zhou and Langfeng Zhu, An optimal $L^2$ extension theorem on weakly pseudoconvex Kähler manifolds, J. Differential Geom. 110 (2018), no. 1, 135–186. MR 3851746, DOI 10.4310/jdg/1536285628
- Xiangyu Zhou and Langfeng Zhu, Siu’s lemma, optimal $L^2$ extension and applications to twisted pluricanonical sheaves, Math. Ann. 377 (2020), no. 1-2, 675–722. MR 4099619, DOI 10.1007/s00208-018-1783-8
- Langfeng Zhu, Qi’an Guan, and Xiangyu Zhou, On the Ohsawa-Takegoshi $L^2$ extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. (9) 97 (2012), no. 6, 579–601 (English, with English and French summaries). MR 2921602, DOI 10.1016/j.matpur.2011.09.010
References
- Aldo Andreotti and Arnold Kas, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 187–263. MR 425160
- Bo Berndtsson and László Lempert, A proof of the Ohsawa-Takegoshi theorem with sharp estimates, J. Math. Soc. Japan 68 (2016), no. 4, 1461–1472. MR 3564439, DOI 10.2969/jmsj/06841461
- Zbigniew Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), no. 1, 149–158. MR 3069114, DOI 10.1007/s00222-012-0423-2
- Junyan Cao, Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 (2014), no. 11, 1869–1902. MR 3279260, DOI 10.1112/S0010437X14007398
- Junyan Cao, Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and applications, Complex and symplectic geometry, Springer INdAM Ser., vol. 21, Springer, Cham, 2017, pp. 19–38. MR 3645303
- JunYan Cao, Jean-Pierre Demailly, and Shin-ichi Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math. 60 (2017), no. 6, 949–962. MR 3647124, DOI 10.1007/s11425-017-9066-0
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI 10.1007/BFb0094512
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 1–148. MR 1919457
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Jean-Pierre Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I, Adv. Lect. Math. (ALM), vol. 35, Int. Press, Somerville, MA, 2016, pp. 191–222. MR 3525916
- Jean-Pierre Demailly, Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties, Geometric complex analysis, Springer Proc. Math. Stat., vol. 246, Springer, Singapore, 2018, pp. 97–113. MR 3923220, DOI 10.1007/978-981-13-1672-2_8
- J.-P. Demailly, Complex analytic and differential geometry, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- Jean-Pierre Demailly, Christopher D. Hacon, and Mihai Păun, Extension theorems, non-vanishing and the existence of good minimal models, Acta Math. 210 (2013), no. 2, 203–259. MR 3070567, DOI 10.1007/s11511-013-0094-x
- Ichiro Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 59–68. MR 1215279
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013), 149–174. MR 3181493, DOI 10.1515/crelle-2012-0036
- O. Fujino and S. Matsumura, Injectivity theorem for pseudo-effective line bundles and its applications, arXiv:1605.02284v2 (2016).
- Yoshinori Gongyo and Shin-ichi Matsumura, Versions of injectivity and extension theorems, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 479–502 (English, with English and French summaries). MR 3621435, DOI 10.24033/asens.2325
- Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 (German). MR 121814
- Qi’an Guan and Xiangyu Zhou, Optimal constant problem in the $L^2$ extension theorem, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 753–756 (English, with English and French summaries). MR 2981347, DOI 10.1016/j.crma.2012.08.007
- Qi’An Guan and XiangYu Zhou, Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa, Sci. China Math. 58 (2015), no. 1, 35–59. MR 3296330, DOI 10.1007/s11425-014-4946-4
- Qi’an Guan and Xiangyu Zhou, A solution of an $L^2$ extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208. MR 3296822, DOI 10.4007/annals.2015.181.3.6
- Qi’an Guan and Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. MR 3418526, DOI 10.4007/annals.2015.182.2.5
- Qi’an Guan and Xiangyu Zhou, Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math. 202 (2015), no. 2, 635–676. MR 3418242, DOI 10.1007/s00222-014-0575-3
- Qi’An Guan and XiangYu Zhou, Strong openness of multiplier ideal sheaves and optimal $L^2$ extension, Sci. China Math. 60 (2017), no. 6, 967–976. MR 3647126, DOI 10.1007/s11425-017-9055-5
- Qi’an Guan, Xiangyu Zhou, and Langfeng Zhu, On the Ohsawa-Takegoshi $L^2$ extension theorem and the twisted Bochner-Kodaira identity, C. R. Math. Acad. Sci. Paris 349 (2011), no. 13-14, 797–800 (English, with English and French summaries). MR 2825944, DOI 10.1016/j.crma.2011.06.001
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Christopher Hacon, Mihnea Popa, and Christian Schnell, Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Păun, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., Providence, RI, 2018, pp. 143–195. MR 3832403, DOI 10.1090/conm/712/14346
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- G. Hosono, The optimal jet $L^2$ extension of Ohsawa-Takegoshi type, arXiv:1706.08725v2 (2017).
- Christer O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), no. 3, 295–304 (French, with English summary). MR 544525
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351
- Shin-ichi Matsumura, A Nadel vanishing theorem via injectivity theorems, Math. Ann. 359 (2014), no. 3-4, 785–802. MR 3231016, DOI 10.1007/s00208-014-1018-6
- Shin-ichi Matsumura, A Nadel vanishing theorem for metrics with minimal singularities on big line bundles, Adv. Math. 280 (2015), 188–207. MR 3350216, DOI 10.1016/j.aim.2015.03.019
- Shin-ichi Matsumura, An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, J. Algebraic Geom. 27 (2018), no. 2, 305–337. MR 3764278, DOI 10.1090/jag/687
- S. Matsumura, Injectivity theorems with multiplier ideal sheaves for higher direct images under Kähler morphisms, arXiv:1607.05554v2 (2016).
- Xiankui Meng and Xiangyu Zhou, Pseudo-effective line bundles over holomorphically convex manifolds, J. Algebraic Geom. 28 (2019), no. 1, 169–200. MR 3875365, DOI 10.1090/jag/714
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- Takeo Ohsawa, On the extension of $L^2$ holomorphic functions. V. Effects of generalization, Nagoya Math. J. 161 (2001), 1–21. MR 1820210, DOI 10.1017/S0027763000022108
- Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR 2153535
- Takeo Ohsawa, $L^2$ approaches in several complex variables, Springer Monographs in Mathematics, Springer, Tokyo, 2015. Development of Oka-Cartan theory by $L^2$ estimates for the $\overline \partial$ operator. MR 3443603, DOI 10.1007/978-4-431-55747-0
- Takeo Ohsawa, On the extension of $L^2$ holomorphic functions VIII—a remark on a theorem of Guan and Zhou, Internat. J. Math. 28 (2017), no. 9, 1740005, 12. MR 3690414, DOI 10.1142/S0129167X17400055
- Takeo Ohsawa and Kenshō Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI 10.1007/BF01166457
- Mihai Păun and Shigeharu Takayama, Positivity of twisted relative pluricanonical bundles and their direct images, J. Algebraic Geom. 27 (2018), no. 2, 211–272. MR 3764276, DOI 10.1090/jag/702
- David Prill, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80. MR 296350, DOI 10.1007/BF01110367
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3, 661–673. MR 1660941, DOI 10.1007/s002220050276
- Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 223–277. MR 1922108
- Yum-Tong Siu, Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical bundles, Finite or infinite dimensional complex analysis and applications, Adv. Complex Anal. Appl., vol. 2, Kluwer Acad. Publ., Dordrecht, 2004, pp. 45–83. MR 2058399
- Yum-Tong Siu, Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A 48 (2005), no. suppl., 1–31. MR 2156488, DOI 10.1007/bf02884693
- Henri Skoda, Morphismes surjectifs de fibrés vectoriels semi-positifs, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 577–611 (French). MR 533068
- Kenshō Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), no. 3, 389–416. MR 1354997, DOI 10.1007/BF01460997
- S. G. Tankeev, $n$-dimensional canonically polarized varieties, and varieties of basic type, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 31–44 (Russian). MR 0277528
- H. Tsuji, Extension of log pluricanonical forms from subvarieties, arXiv:0709.2710v2 (2007).
- Xiangyu Zhou and Langfeng Zhu, Ohsawa-Takegoshi $L^2$ extension theorem: revisited, Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1, vol. 2, Amer. Math. Soc., Providence, RI, 2012, pp. 475–490. MR 2908088
- Xiangyu Zhou and Langfeng Zhu, Regularization of quasi-plurisubharmonic functions on complex manifolds, Sci. China Math. 61 (2018), no. 7, 1163–1174. MR 3817169, DOI 10.1007/s11425-018-9289-4
- Xiangyu Zhou and Langfeng Zhu, An optimal $L^2$ extension theorem on weakly pseudoconvex Kähler manifolds, J. Differential Geom. 110 (2018), no. 1, 135–186. MR 3851746, DOI 10.4310/jdg/1536285628
- Xiangyu Zhou and Langfeng Zhu, Siu’s lemma, optimal $L^2$ extension and applications to twisted pluricanonical sheaves, Math. Ann. 377 (2020), no. 1-2, 675–722. MR 4099619, DOI 10.1007/s00208-018-1783-8
- Langfeng Zhu, Qi’an Guan, and Xiangyu Zhou, On the Ohsawa-Takegoshi $L^2$ extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. (9) 97 (2012), no. 6, 579–601 (English, with English and French summaries). MR 2921602, DOI 10.1016/j.matpur.2011.09.010
Additional Information
Xiangyu Zhou
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444; Institute of Mathematics, Academy of Mathematics and Systems Science, Beijing 100190; and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
MR Author ID:
260186
Email:
xyzhou@math.ac.cn
Langfeng Zhu
Affiliation:
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, People’s Republic of China
Email:
zhulangfeng@amss.ac.cn
Received by editor(s):
September 19, 2019
Received by editor(s) in revised form:
February 1, 2020
Published electronically:
September 6, 2021
Additional Notes:
The first author was partially supported by the National Natural Science Foundation of China (No. 11688101 and No. 11431013). The second author was partially supported by the National Natural Science Foundation of China (No. 12022110, No. 11201347, and No. 11671306). Both of the authors are corresponding authors.
Article copyright:
© Copyright 2021
University Press, Inc.