Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Local smoothing properties of dispersive equations
HTML articles powered by AMS MathViewer

by P. Constantin and J.-C. Saut
J. Amer. Math. Soc. 1 (1988), 413-439
DOI: https://doi.org/10.1090/S0894-0347-1988-0928265-0
References
    L. Abdelouhab, J. Bona, M. Felland, and J. C. Saut, Nonlocal models for nonlinear dispersive waves, Physica D, 1987. M. Balabane, On a regularizing effect of Schrödinger type groups, PrÚ-publications mathématiques, Université Paris-Nord, no. 68, 1986.
  • M. Balabane and H. A. Emamirad, $L^p$ estimates for Schrödinger evolution equations, Trans. Amer. Math. Soc. 292 (1985), no. 1, 357–373. MR 805968, DOI 10.1090/S0002-9947-1985-0805968-3
  • Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math. 61 (1988), no. 4, 477–494. MR 952091, DOI 10.1007/BF01258601
  • Peter Constantin and Jean-Claude Saut, Effets rĂ©gularisants locaux pour des Ă©quations dispersives gĂ©nĂ©rales, C. R. Acad. Sci. Paris SĂ©r. I Math. 304 (1987), no. 14, 407–410 (French, with English summary). MR 888234
  • J. A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math. 70 (1984), no. 3, 235–258. MR 742590, DOI 10.1002/sapm1984703235
  • J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. PoincarĂ© Anal. Non LinĂ©aire 2 (1985), no. 4, 309–327 (English, with French summary). MR 801582
  • Nakao Hayashi, Kuniaki Nakamitsu, and Masayoshi Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal. 71 (1987), no. 2, 218–245. MR 880978, DOI 10.1016/0022-1236(87)90002-4
  • Nakao Hayashi, Kuniaki Nakamitsu, and Masayoshi Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z. 192 (1986), no. 4, 637–650. MR 847012, DOI 10.1007/BF01162710
  • Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128. MR 759907
  • —, On nonlinear Schrödinger equations, Ann. Inst. H. PoincarĂ©. Phys. ThĂ©or. 46 (1987), 113-129.
  • Antony K. Liu, Interaction of solitary waves in stratified fluids, Advances in nonlinear waves, Vol. I, Res. Notes in Math., vol. 95, Pitman, Boston, MA, 1984, pp. 108–117. MR 747825
  • Peter J. Olver, Hamiltonian and non-Hamiltonian models for water waves, Trends and applications of pure mathematics to mechanics (Palaiseau, 1983) Lecture Notes in Phys., vol. 195, Springer, Berlin, 1984, pp. 273–290. MR 755731, DOI 10.1007/3-540-12916-2_{6}2
  • J.-C. Saut, Sur quelques gĂ©nĂ©ralisations de l’équation de Korteweg-de Vries, J. Math. Pures Appl. (9) 58 (1979), no. 1, 21–61 (French). MR 533234
  • P. Sjölin, Regularity of solutions to the Schrödinger equations, Uppsala University, Dept. of Math., Report no. 1986-14.
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
  • G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0483954
  • Kenji Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), no. 3, 415–426. MR 891945
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC: 35Q20, 35D10
  • Retrieve articles in all journals with MSC: 35Q20, 35D10
Bibliographic Information
  • © Copyright 1988 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 1 (1988), 413-439
  • MSC: Primary 35Q20; Secondary 35D10
  • DOI: https://doi.org/10.1090/S0894-0347-1988-0928265-0
  • MathSciNet review: 928265