Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The least action principle and the related concept of generalized flows for incompressible perfect fluids
HTML articles powered by AMS MathViewer

by Yann Brenier
J. Amer. Math. Soc. 2 (1989), 225-255
DOI: https://doi.org/10.1090/S0894-0347-1989-0969419-8

Abstract:

The link between the Euler equations of perfect incompressible flows and the Least Action Principle has been known for a long time [1]. Solutions can be considered as geodesic curves along the manifold of volume preserving mappings. Here the “shortest path problem” is investigated. Given two different volume preserving mappings at two different times, find, for the intermediate times, an incompressible flow map that minimizes the kinetic energy (or, more generally, the Action). In its classical formulation, this problem has been solved [7] only when the two different mappings are sufficiently close in some very strong sense. In this paper, a new framework is introduced, where generalized flows are defined, in the spirit of L. C. Young, as probability measures on the set of all possible trajectories in the physical space. Then the minimization problem is generalized as the “continuous linear programming” problem that is much easier to handle. The existence problem is completely solved in the case of the $d$-dimensional torus. It is also shown that under natural restrictions a classical solution to the Euler equations is the unique optimal flow in the generalized framework. Finally, a link is established with the concept of measure-valued solutions to the Euler equations [6], and an example is provided where the unique generalized solution can be explicitly computed and turns out to be genuinely probabilistic.
References
  • V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
  • V. I. Arnold and A. Avez, Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, vol. 9, Gauthier-Villars, Éditeur, Paris, 1967 (French). MR 0209436
  • N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces $L^{p}$, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1175, Hermann, Paris, 1965 (French). Deuxième édition revue et augmentée. MR 0219684
  • Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 19, 805–808 (French, with English summary). MR 923203
  • Ronald J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), no. 3, 223–270. MR 775191, DOI 10.1007/BF00752112
  • Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667–689. MR 877643
  • David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
  • Ivar Ekeland and Roger Temam, Analyse convexe et problèmes variationnels, Collection Études Mathématiques, Dunod, Paris; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974 (French). MR 0463993
  • S. T. Rachev, The Monge-Kantorovich problem on mass transfer and its applications in stochastics, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 625–653 (Russian). MR 773434
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
  • L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia-London-Toronto, Ont., 1969. Foreword by Wendell H. Fleming. MR 0259704
Similar Articles
Bibliographic Information
  • © Copyright 1989 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 2 (1989), 225-255
  • MSC: Primary 58D05; Secondary 35Q10, 49H05, 58E30, 58F11, 76A02, 76C05
  • DOI: https://doi.org/10.1090/S0894-0347-1989-0969419-8
  • MathSciNet review: 969419