Representations of fundamental groups of manifolds with a semisimple transformation group
HTML articles powered by AMS MathViewer
- by Robert J. Zimmer
- J. Amer. Math. Soc. 2 (1989), 201-213
- DOI: https://doi.org/10.1090/S0894-0347-1989-0973308-2
- PDF | Request permission
References
- S. R. Adams and R. J. Spatzier, Kazhdan groups, cocycles and trees, Amer. J. Math. 112 (1990), no. 2, 271–287. MR 1047300, DOI 10.2307/2374716
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
- Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55. MR 642850
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Michael Gromov, Rigid transformations groups, Géométrie différentielle (Paris, 1986) Travaux en Cours, vol. 33, Hermann, Paris, 1988, pp. 65–139. MR 955852
- F. E. A. Johnson, On the existence of irreducible discrete subgroups in isotypic Lie groups of classical type, Proc. London Math. Soc. (3) 56 (1988), no. 1, 51–77. MR 915530, DOI 10.1112/plms/s3-56.1.51
- Alexander Lubotzky and Robert J. Zimmer, Variants of Kazhdan’s property for subgroups of semisimple groups, Israel J. Math. 66 (1989), no. 1-3, 289–299. MR 1017168, DOI 10.1007/BF02765899
- W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305–316. MR 241525, DOI 10.1090/S0002-9904-1969-12149-X
- Robert J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 3, 407–428. MR 521638
- Robert J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. (2) 112 (1980), no. 3, 511–529. MR 595205, DOI 10.2307/1971090
- Robert J. Zimmer, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 237–253. MR 661822, DOI 10.1017/s0143385700009251
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Ergodic theory and the automorphism group of a $G$-structure, Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 6, Springer, New York, 1987, pp. 247–278. MR 880380, DOI 10.1007/978-1-4612-4722-7_{1}0
- Robert J. Zimmer, Arithmeticity of holonomy groups of Lie foliations, J. Amer. Math. Soc. 1 (1988), no. 1, 35–58. MR 924701, DOI 10.1090/S0894-0347-1988-0924701-4
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 201-213
- MSC: Primary 22E40; Secondary 22E45, 28D15, 57S20
- DOI: https://doi.org/10.1090/S0894-0347-1989-0973308-2
- MathSciNet review: 973308