Affine Hecke algebras and their graded version
HTML articles powered by AMS MathViewer
- by George Lusztig
- J. Amer. Math. Soc. 2 (1989), 599-635
- DOI: https://doi.org/10.1090/S0894-0347-1989-0991016-9
- PDF | Request permission
References
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Robert W. Kilmoyer, Principal series representations of finite Chevalley groups, J. Algebra 51 (1978), no. 1, 300–319. MR 487479, DOI 10.1016/0021-8693(78)90149-7
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- George Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653. MR 694380, DOI 10.1090/S0002-9947-1983-0694380-4
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345
- I. G. Macdonald, Spherical functions on a group of $p$-adic type, Publications of the Ramanujan Institute, No. 2, University of Madras, Centre for Advanced Study in Mathematics, Ramanujan Institute, Madras, 1971. MR 0435301
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 599-635
- MSC: Primary 16A64; Secondary 20H15, 22E50
- DOI: https://doi.org/10.1090/S0894-0347-1989-0991016-9
- MathSciNet review: 991016