Symmetric decreasing rearrangement is sometimes continuous
HTML articles powered by AMS MathViewer
- by Frederick J. Almgren and Elliott H. Lieb
- J. Amer. Math. Soc. 2 (1989), 683-773
- DOI: https://doi.org/10.1090/S0894-0347-1989-1002633-4
- PDF | Request permission
Abstract:
This paper deals with the operation $\mathcal {R}$ of symmetric decreasing rearrangement which maps ${{\mathbf {W}}^{1,p}}({{\mathbf {R}}^n})$ to ${{\mathbf {W}}^{1,p}}({{\mathbf {R}}^n})$. We show that even though it is norm decreasing, $\mathcal {R}$ is not continuous for $n \geq 2$. The functions at which $\mathcal {R}$ is continuous are precisely characterized by a new property called co-area regularity. Every sufficiently differentiable function is co-area regular, and both the regular and the irregular functions are dense in ${{\mathbf {W}}^{1,p}}({{\mathbf {R}}^n})$. Curiously, $\mathcal {R}$ is always continuous in fractional Sobolev spaces ${{\mathbf {W}}^{\alpha ,p}}({{\mathbf {R}}^n})$ with $0 < \alpha < 1$.References
- F. J. Almgren, Spherical symmetrization, Proc. Internat. Workshop on Integral Functionals in the Calculus of Variations, Trieste, September 1985, Supplemento Rend. Circ. Mat. Palermo (2) 15 (1987), 1-25.
F. J. Almgren and E. H. Lieb, The (non)continuity of symmetric decreasing rearrangement. This is a summary of our results. It is to be published in Sympos. Math., Proc. Conf. on Geometry of Solutions to PDE, Academic Press, New York, and in Proc. Workshop on Variational Problems, Paris, June 1988.
- Frederick J. Almgren Jr. and Elliott H. Lieb, Symmetric decreasing rearrangement can be discontinuous, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 2, 177–180. MR 968686, DOI 10.1090/S0273-0979-1989-15754-6
- A. Ambrosetti and R. E. L. Turner, Some discontinuous variational problems, Differential Integral Equations 1 (1988), no. 3, 341–349. MR 929921
- Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598 (French). MR 448404
- Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
- J. L. Bona, D. K. Bose, and R. E. L. Turner, Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl. (9) 62 (1983), no. 4, 389–439 (1984). MR 735931
- Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490. MR 699419, DOI 10.1090/S0002-9939-1983-0699419-3
- H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237. MR 0346109, DOI 10.1016/0022-1236(74)90013-5
- John E. Brothers and William P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. MR 929981
- Giuseppe Chiti, Rearrangements of functions and convergence in Orlicz spaces, Applicable Anal. 9 (1979), no. 1, 23–27. MR 536688, DOI 10.1080/00036817908839248
- J.-M. Coron, The continuity of the rearrangement in $W^{1,p}(\textbf {R})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 57–85. MR 752580
- J. A. Crowe, J. A. Zweibel, and P. C. Rosenbloom, Rearrangements of functions, J. Funct. Anal. 66 (1986), no. 3, 432–438. MR 839110, DOI 10.1016/0022-1236(86)90067-4
- Michael G. Crandall and Luc Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 (1980), no. 3, 385–390. MR 553381, DOI 10.1090/S0002-9939-1980-0553381-X
- G. F. D. Duff, A general integral inequality for the derivative of an equimeasurable rearrangement, Canadian J. Math. 28 (1976), no. 4, 793–804. MR 409745, DOI 10.4153/CJM-1976-076-0
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- Keijo Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), no. 3, 215–235. MR 409773, DOI 10.1007/BF01245917 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
- Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. MR 810619, DOI 10.1007/BFb0075060
- Elliott H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57 (1976/77), no. 2, 93–105. MR 471785, DOI 10.1002/sapm197757293
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486 F. Riesz, Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162-168.
- Bernhard Ruf and Sergio Solimini, On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions, SIAM J. Math. Anal. 17 (1986), no. 4, 761–771. MR 846387, DOI 10.1137/0517055
- Emanuel Sperner Jr., Symmetrisierung für Funktionen mehrerer reeler Variablen, Manuscripta Math. 11 (1974), 159–170 (German, with English summary). MR 328000, DOI 10.1007/BF01184955
- Emanuel Sperner Jr., Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134 (1973), 317–327 (German). MR 340558, DOI 10.1007/BF01214695
- James Serrin, On a fundamental theorem of the calculus of variations, Acta Math. 102 (1959), 1–22. MR 108745, DOI 10.1007/BF02559565
- James Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), 139–167. MR 138018, DOI 10.1090/S0002-9947-1961-0138018-9
- Paul Concus and Robert Finn (eds.), Variational methods for free surface interfaces, Springer-Verlag, New York, 1987. MR 872882, DOI 10.1007/978-1-4612-4656-5
- Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 463908, DOI 10.1007/BF02418013
- Hassler Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), no. 4, 514–517. MR 1545896, DOI 10.1215/S0012-7094-35-00138-7
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 683-773
- MSC: Primary 49F20; Secondary 46E30, 49A50
- DOI: https://doi.org/10.1090/S0894-0347-1989-1002633-4
- MathSciNet review: 1002633