The $\Pi ^ 1_ 2$-singleton conjecture
HTML articles powered by AMS MathViewer
- by Sy D. Friedman
- J. Amer. Math. Soc. 3 (1990), 771-791
- DOI: https://doi.org/10.1090/S0894-0347-1990-1071116-6
- PDF | Request permission
Abstract:
The real ${0^\# } = {\operatorname {Thy}}\left \langle {L,\varepsilon ,{\aleph _1},{\aleph _2}, \ldots } \right \rangle$ is a natural example of a nonconstructible definable real. Moreover ${0^\# }$ has a definition that is absolute: for some formula $\phi (x),{0^\# }$ is the unique real $R$ such that $L[R] \vDash \phi (R)$. Solovay conjectured that there is a real $R$ such that $0{ < _L}R{ < _L}{0^\# }$ and $R$ also has such an absolute definition. We prove his conjecture by constructing a $\Pi _2^1$-singleton $R$, $0{ < _L}R{ < _L}{0^\# }$. A variant of our construction produces a countable nonempty $\Pi _2^1$ set of reals not containing a $\Pi _2^1$-singleton. The latter result answers a question of Kechris.References
- A. Beller, R. Jensen, and P. Welch, Coding the universe, London Mathematical Society Lecture Note Series, vol. 47, Cambridge University Press, Cambridge-New York, 1982. MR 645538, DOI 10.1017/CBO9780511629198
- René David, A very absolute $\Pi ^{1}_{2}$ real singleton, Ann. Math. Logic 23 (1982), no. 2-3, 101–120 (1983). MR 701122, DOI 10.1016/0003-4843(82)90001-8
- Sy D. Friedman, An immune partition of the ordinals, Recursion theory week (Oberwolfach, 1984) Lecture Notes in Math., vol. 1141, Springer, Berlin, 1985, pp. 141–147. MR 820778, DOI 10.1007/BFb0076218
- Sy D. Friedman, Minimal coding, Ann. Pure Appl. Logic 41 (1989), no. 3, 233–297. MR 984629, DOI 10.1016/0168-0072(89)90002-X
- R. B. Jensen and R. M. Solovay, Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 84–104. MR 0289291 A. Kechris and W. H. Woodin, On thin $\Pi _2^1$ sets, handwritten note, 1983. M. Stanley, An absolute $\Pi _2^1$-singleton (to appear).
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 771-791
- MSC: Primary 03E45
- DOI: https://doi.org/10.1090/S0894-0347-1990-1071116-6
- MathSciNet review: 1071116