Combinatorial stratification of complex arrangements
HTML articles powered by AMS MathViewer
- by Anders Björner and Günter M. Ziegler
- J. Amer. Math. Soc. 5 (1992), 105-149
- DOI: https://doi.org/10.1090/S0894-0347-1992-1119198-9
- PDF | Request permission
Abstract:
We present a method for discretizing complex hyperplane arrangements by encoding their topology into a finite partially ordered set of “sign vectors.” This is used in the following ways: (1) A general method is given for constructing regular cell complexes having the homotopy type of the complement of the arrangement. (2) For the case of complexified arrangements this specializes to the construction of Salvetti [S]. We study the combinatorial structure of complexified arrangements and the Salvetti complex in some detail. (3) This general method simultaneously produces cell decompositions of the singularity link. This link is shown to have the homotopy type of a wedge of spheres for arrangements in ${\mathbb {C}^d},\;d \geq 4$. (4) The homology of the link and the cohomology of the complement are computed in terms of explicit bases, which are matched by Alexander duality. This gives a new, more elementary, and more generally valid proof for the Brieskorn-Orlik-Solomon theorem and some related results. (5) Our setup leads to a more general notion of “$2$-pseudoarrangements,” which can be thought of as topologically deformed complex arrangements (retaining only the essential topological and combinatorial structure). We show that all of the above remains true in this generality, except for the sign patterns of the Orlik-Solomon relations.References
- V. I. Arnol′d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian). MR 242196
- William A. Arvola, Complexified real arrangements of hyperplanes, Manuscripta Math. 71 (1991), no. 3, 295–306. MR 1103735, DOI 10.1007/BF02568407
- Margaret Bayer and Bernd Sturmfels, Lawrence polytopes, Canad. J. Math. 42 (1990), no. 1, 62–79. MR 1043511, DOI 10.4153/CJM-1990-004-4
- Anders Björner, On the homology of geometric lattices, Algebra Universalis 14 (1982), no. 1, 107–128. MR 634422, DOI 10.1007/BF02483913
- Anders Björner, The homology and shellability of matroids and geometric lattices, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226–283. MR 1165544, DOI 10.1017/CBO9780511662041.008
- Lajos Takács, Combinatorics, Nonparametric methods, Handbook of Statist., vol. 4, North-Holland, Amsterdam, 1984, pp. 123–143. MR 831711, DOI 10.1016/S0169-7161(84)04009-8 A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented matroids, Cambridge Univ. Press, London and New York, 1992.
- Anders Björner and Günter M. Ziegler, Broken circuit complexes: factorizations and generalizations, J. Combin. Theory Ser. B 51 (1991), no. 1, 96–126. MR 1088629, DOI 10.1016/0095-8956(91)90008-8
- Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol′d], Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. Exp. No. 401, pp. 21–44 (French). MR 0422674
- Tom Brylawski, The broken-circuit complex, Trans. Amer. Math. Soc. 234 (1977), no. 2, 417–433. MR 468931, DOI 10.1090/S0002-9947-1977-0468931-6
- George E. Cooke and Ross L. Finney, Homology of cell complexes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1967. Based on lectures by Norman E. Steenrod. MR 0219059, DOI 10.1515/9781400877751 J. Edmonds and A. Mandel, Topology of oriented matroids, Ph.D. Thesis of A. Mandel, University of Waterloo, 1982. M. J. Falk, Geometry and topology of hyperplane arrangements, Ph.D. Thesis, University of Wisconsin, Madison, 1983.
- Michael Falk, A geometric duality for order complexes and hyperplane complements, European J. Combin. 13 (1992), no. 5, 351–355. MR 1181076, DOI 10.1016/S0195-6698(05)80014-9
- Jon Folkman and Jim Lawrence, Oriented matroids, J. Combin. Theory Ser. B 25 (1978), no. 2, 199–236. MR 511992, DOI 10.1016/0095-8956(78)90039-4
- I. M. Gel′fand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math. 63 (1987), no. 3, 301–316. MR 877789, DOI 10.1016/0001-8708(87)90059-4
- I. M. Gel′fand and G. L. Rybnikov, Algebraic and topological invariants of oriented matroids, Dokl. Akad. Nauk SSSR 307 (1989), no. 4, 791–795 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 1, 148–152. MR 1020668
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- Michel Jambu and Daniel Leborgne, Fonction de Möbius et arrangements d’hyperplans, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 7, 311–314 (French, with English summary). MR 859810
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- Peter Orlik, Introduction to arrangements, CBMS Regional Conference Series in Mathematics, vol. 72, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1006880, DOI 10.1090/cbms/072
- Peter Orlik, Complements of subspace arrangements, J. Algebraic Geom. 1 (1992), no. 1, 147–156. MR 1129843
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Richard Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989), no. 2, 555–559. MR 984812, DOI 10.1090/S0002-9939-1989-0984812-7
- M. Salvetti, Topology of the complement of real hyperplanes in $\textbf {C}^N$, Invent. Math. 88 (1987), no. 3, 603–618. MR 884802, DOI 10.1007/BF01391833
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- A. N. Varchenko, The numbers of faces of a configuration of hyperplanes, Dokl. Akad. Nauk SSSR 302 (1988), no. 3, 527–530 (Russian); English transl., Soviet Math. Dokl. 38 (1989), no. 2, 291–295. MR 973277 N. White, ed., Theory of matroids, Cambridge Univ. Press, 1986. G. M. Ziegler, Algebraic combinatorics of hyperplane arrangements, Ph.D. Thesis, MIT, 1987. —, Combinatorial models for subspace arrangements (in preparation).
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: J. Amer. Math. Soc. 5 (1992), 105-149
- MSC: Primary 52B30; Secondary 32S60
- DOI: https://doi.org/10.1090/S0894-0347-1992-1119198-9
- MathSciNet review: 1119198