The regularity of mappings with a convex potential
HTML articles powered by AMS MathViewer
- by Luis A. Caffarelli PDF
- J. Amer. Math. Soc. 5 (1992), 99-104 Request permission
References
- Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 19, 805–808 (French, with English summary). MR 923203
- L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2) 131 (1990), no. 1, 129–134. MR 1038359, DOI 10.2307/1971509
- Luis A. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135–150. MR 1038360, DOI 10.2307/1971510
- Luis A. Caffarelli, Some regularity properties of solutions of Monge Ampère equation, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 965–969. MR 1127042, DOI 10.1002/cpa.3160440809
- A. V. Pogorelov, Monge-Ampère equations of elliptic type, P. Noordhoff Ltd., Groningen, 1964. Translated from the first Russian edition by Leo F. Boron with the assistance of Albert L. Rabenstein and Richard C. Bollinger. MR 0180763
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: J. Amer. Math. Soc. 5 (1992), 99-104
- MSC: Primary 35B65; Secondary 35A30, 35J60
- DOI: https://doi.org/10.1090/S0894-0347-1992-1124980-8
- MathSciNet review: 1124980