Automorphisms of the dimension group and gyration numbers
HTML articles powered by AMS MathViewer
- by K. H. Kim, F. W. Roush and J. B. Wagoner PDF
- J. Amer. Math. Soc. 5 (1992), 191-212 Request permission
References
- Kirby A. Baker, Strong shift equivalence of $2\times 2$ matrices of nonnegative integers, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 501–508. MR 753918, DOI 10.1017/S0143385700002091
- Mike Boyle and David Handelman, Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), no. 1, 121–149. MR 1102219, DOI 10.1090/S0002-9947-1993-1102219-4
- Mike Boyle and Wolfgang Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), no. 1, 125–149. MR 887501, DOI 10.1090/S0002-9947-1987-0887501-5
- Mike Boyle, Douglas Lind, and Daniel Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 306 (1988), no. 1, 71–114. MR 927684, DOI 10.1090/S0002-9947-1988-0927684-2
- Joachim Cuntz and Wolfgang Krieger, Topological Markov chains with dicyclic dimension groups, J. Reine Angew. Math. 320 (1980), 44–51. MR 592141, DOI 10.1515/crll.1980.320.44
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762 U. Fiebig, Uber gyrationszahlenfolgen und ein darstellungenproblem in der symbolischen dynamik, Dissertation, Univ. of Gottingen, 1987. —, Gyration numbers for involutions of subshifts of finite type, Math. Forum (to appear).
- John M. Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics, vol. 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C. by the American Mathematical Society, Providence, R.I., 1982. MR 669378
- David Handelman, Positive matrices and dimension groups affiliated to $C^{\ast }$-algebras and topological Markov chains, J. Operator Theory 6 (1981), no. 1, 55–74. MR 637001
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Wolfgang Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239–250. MR 561973, DOI 10.1007/BF01390047
- K. H. Kim and F. W. Roush, Some results on decidability of shift equivalence, J. Combin. Inform. System Sci. 4 (1979), no. 2, 123–146. MR 564188 —, On the structure of inert automorphisms of subshifts, preprint, Alabama State Univ. at Montgomery 1989.
- K. H. Kim and F. W. Roush, Williams’s conjecture is false for reducible subshifts, J. Amer. Math. Soc. 5 (1992), no. 1, 213–215. MR 1130528, DOI 10.1090/S0894-0347-1992-1130528-4
- Masakazu Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 564–607. MR 970572, DOI 10.1007/BFb0082848
- William Parry and Selim Tuncel, Classification problems in ergodic theory, Statistics: Textbooks and Monographs, vol. 41, Cambridge University Press, Cambridge-New York, 1982. MR 666871
- William Parry and R. F. Williams, Block coding and a zeta function for finite Markov chains, Proc. London Math. Soc. (3) 35 (1977), no. 3, 483–495. MR 466490, DOI 10.1112/plms/s3-35.3.483
- J. B. Wagoner, Markov partitions and $K_2$, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 91–129. MR 908217
- J. B. Wagoner, Triangle identities and symmetries of a subshift of finite type, Pacific J. Math. 144 (1990), no. 1, 181–205. MR 1056673
- J. B. Wagoner, Eventual finite order generation for the kernel of the dimension group representation, Trans. Amer. Math. Soc. 317 (1990), no. 1, 331–350. MR 1027363, DOI 10.1090/S0002-9947-1990-1027363-9
- J. B. Wagoner, Higher-dimensional shift equivalence and strong shift equivalence are the same over the integers, Proc. Amer. Math. Soc. 109 (1990), no. 2, 527–536. MR 1012941, DOI 10.1090/S0002-9939-1990-1012941-9
- Edwin Weiss, Algebraic number theory, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0159805
- R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 341–361. MR 0266227
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI 10.2307/1970908
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: J. Amer. Math. Soc. 5 (1992), 191-212
- MSC: Primary 54H20; Secondary 20F28, 28D99, 58F03
- DOI: https://doi.org/10.1090/S0894-0347-1992-1124983-3
- MathSciNet review: 1124983