Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


The classification of critically preperiodic polynomials as dynamical systems
HTML articles powered by AMS MathViewer

by Ben Bielefeld, Yuval Fisher and John Hubbard
J. Amer. Math. Soc. 5 (1992), 721-762
  • Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
  • Lennart Carleson and Peter W. Jones, On coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), no. 2, 169–206. MR 1162188, DOI 10.1215/S0012-7094-92-06605-1
  • Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, vol. 1, Birkhäuser, Boston, Mass., 1980. MR 613981
  • A. Douady and J. H. Hubbard, Systèmes dynamiques holomorphes. I, II: Itération des polynômes complexes, Publ. Math. Orsay 84.02 (1984), 85.04 (1985). —, A proof of Thurston topological characterization of rational functions, Institute Mittag-Leffler, Preprint (1984). O. Forster, Riemann surfaces, Springer-Verlag, Berlin-Heidelberg-New York, 1984. P. Fatou, Sur les solutions uniformes de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 143 (1906), 546-548. S. Levy, Critically finite rational maps, Ph.D. Thesis, Princeton Univ., 1985.
  • John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
  • John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR 970571, DOI 10.1007/BFb0082847
  • Tan Lei, Accouplements des polynômes complexes, Ph.D. Thesis, Université de Paris Sud, 1987. B. Wittner, On the bifurcation loci of rational maps of degree 2, (to appear).
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC: 58F23, 30D05
  • Retrieve articles in all journals with MSC: 58F23, 30D05
Bibliographic Information
  • © Copyright 1992 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 5 (1992), 721-762
  • MSC: Primary 58F23; Secondary 30D05
  • DOI:
  • MathSciNet review: 1149891