## Matrices of polynomials, positivity, and finite equivalence of Markov chains

HTML articles powered by AMS MathViewer

- by Brian Marcus and Selim Tuncel PDF
- J. Amer. Math. Soc.
**6**(1993), 131-147 Request permission

## References

- Roy L. Adler and Brian Marcus,
*Topological entropy and equivalence of dynamical systems*, Mem. Amer. Math. Soc.**20**(1979), no. 219, iv+84. MR**533691**, DOI 10.1090/memo/0219 - Jonathan Ashley,
*Bounded-to-$1$ factors of an aperiodic shift of finite type are $1$-to-$1$ almost everywhere factors also*, Ergodic Theory Dynam. Systems**10**(1990), no. 4, 615–625. MR**1091417**, DOI 10.1017/S0143385700005800 - Jonathan Ashley, Brian Marcus, Dominique Perrin, and Selim Tuncel,
*Surjective extensions of sliding-block codes*, SIAM J. Discrete Math.**6**(1993), no. 4, 582–611. MR**1241398**, DOI 10.1137/0406046
V. De Angelis, Ph. D. thesis, Univ. of Washington, Seattle, 1992.
- David Handelman,
*Positive polynomials and product type actions of compact groups*, Mem. Amer. Math. Soc.**54**(1985), no. 320, xi+79. MR**783217**, DOI 10.1090/memo/0320 - David E. Handelman,
*Positive polynomials, convex integral polytopes, and a random walk problem*, Lecture Notes in Mathematics, vol. 1282, Springer-Verlag, Berlin, 1987. MR**914972**, DOI 10.1007/BFb0078909
—, - Bruce Kitchens,
*Linear algebra and subshifts of finite type*, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 231–248. MR**737405**, DOI 10.1090/conm/026/737405 - Bruce Kitchens and Selim Tuncel,
*Finitary measures for subshifts of finite type and sofic systems*, Mem. Amer. Math. Soc.**58**(1985), no. 338, iv+68. MR**818917**, DOI 10.1090/memo/0338 - Bruce Kitchens and Selim Tuncel,
*On measures induced on subsystems*, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 455–464. MR**970570**, DOI 10.1007/BFb0082846 - Wolfgang Krieger,
*On the finitary isomorphisms of Markov shifts that have finite expected coding time*, Z. Wahrsch. Verw. Gebiete**65**(1983), no. 2, 323–328. MR**722135**, DOI 10.1007/BF00532486 - Brian Marcus and Selim Tuncel,
*The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains*, Ergodic Theory Dynam. Systems**11**(1991), no. 1, 129–180. MR**1101088**, DOI 10.1017/S0143385700006052 - William Parry,
*A finitary classification of topological Markov chains and sofic systems*, Bull. London Math. Soc.**9**(1977), no. 1, 86–92. MR**482707**, DOI 10.1112/blms/9.1.86 - William Parry,
*Problems and perspectives in the theory of Markov shifts*, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 626–637. MR**970575**, DOI 10.1007/BFb0082851 - William Parry and Klaus Schmidt,
*Natural coefficients and invariants for Markov-shifts*, Invent. Math.**76**(1984), no. 1, 15–32. MR**739621**, DOI 10.1007/BF01388488 - William Parry and Selim Tuncel,
*On the classification of Markov chains by finite equivalence*, Ergodic Theory Dynam. Systems**1**(1981), no. 3, 303–335 (1982). MR**662472**, DOI 10.1017/s0143385700001279
H. Poincaré, - E. Seneta,
*Non-negative matrices and Markov chains*, Springer Series in Statistics, Springer, New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544]. MR**2209438** - Selim Tuncel,
*Conditional pressure and coding*, Israel J. Math.**39**(1981), no. 1-2, 101–112. MR**617293**, DOI 10.1007/BF02762856

*Eventual positivity and finite equivalence for matrices of polynomials*, preprint. G. H. Hardy, J. E. Littlewood, and G. Pólya,

*Inequalities*, Cambridge Univ. Press, Cambridge, 1959.

*Sur les équations algébriques*, C. R. Acad. Sci. Paris

**8**(1883), 1418.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**6**(1993), 131-147 - MSC: Primary 28D20; Secondary 15A48, 60J10
- DOI: https://doi.org/10.1090/S0894-0347-1993-1168959-X
- MathSciNet review: 1168959