Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians
HTML articles powered by AMS MathViewer
- by David R. Morrison
- J. Amer. Math. Soc. 6 (1993), 223-247
- DOI: https://doi.org/10.1090/S0894-0347-1993-1179538-2
- PDF | Request permission
Abstract:
We give a mathematical account of a recent string theory calculation which predicts the number of rational curves on the generic quintic threefold. Our account involves the interpretation of Yukawa couplings in terms of variations of Hodge structure, a new $q$-expansion principle for functions on the moduli space of Calabi-Yau manifolds, and the “mirror symmetry” phenomenon recently observed by string theorists.References
- P. S. Aspinwall and C. A. Lütken, Geometry of mirror manifolds, Nuclear Phys. B 353 (1991), no. 2, 427–461. MR 1098649, DOI 10.1016/0550-3213(91)90343-V
- P. S. Aspinwall and C. A. Lütken, Quantum algebraic geometry of superstring compactifications, Nuclear Phys. B 355 (1991), no. 2, 482–510. MR 1103075, DOI 10.1016/0550-3213(91)90123-F
- P. S. Aspinwall, C. A. Lütken, and G. G. Ross, Construction and couplings of mirror manifolds, Phys. Lett. B 241 (1990), no. 3, 373–380. MR 1055062, DOI 10.1016/0370-2693(90)91659-Y
- F. A. Bogomolov, Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR 243 (1978), no. 5, 1101–1104 (Russian). MR 514769
- P. Candelas, Yukawa couplings between $(2,1)$-forms, Nuclear Phys. B 298 (1988), no. 3, 458–492. MR 928307, DOI 10.1016/0550-3213(88)90351-3
- Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74. MR 1115626, DOI 10.1016/0550-3213(91)90292-6
- P. Candelas, M. Lynker, and R. Schimmrigk, Calabi-Yau manifolds in weighted $\textbf {P}_4$, Nuclear Phys. B 341 (1990), no. 2, 383–402. MR 1067295, DOI 10.1016/0550-3213(90)90185-G
- James Carlson, Mark Green, Phillip Griffiths, and Joe Harris, Infinitesimal variations of Hodge structure. I, Compositio Math. 50 (1983), no. 2-3, 109–205. MR 720288
- S. Cecotti, $N=2$ supergravity, type $\textrm {IIB}$ superstrings, and algebraic geometry, Comm. Math. Phys. 131 (1990), no. 3, 517–536. MR 1065895
- S. Cecotti, $N=2$ Landau-Ginzburg vs. Calabi-Yau $\sigma$-models: nonperturbative aspects, Internat. J. Modern Phys. A 6 (1991), no. 10, 1749–1813. MR 1098365, DOI 10.1142/S0217751X91000939
- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, DOI 10.1112/blms/11.3.308
- Robbert Dijkgraaf, Erik Verlinde, and Herman Verlinde, On moduli spaces of conformal field theories with $c\geq 1$, Perspectives in string theory (Copenhagen, 1987) World Sci. Publ., Teaneck, NJ, 1988, pp. 117–137. MR 1029802
- M. Dine, N. Seiberg, X.-G. Wen, and E. Witten, Nonperturbative effects on the string world sheet. II, Nuclear Phys. B 289 (1987), no. 2, 319–363. MR 895317, DOI 10.1016/0550-3213(87)90383-X
- Jacques Distler and Brian Greene, Some exact results on the superpotential from Calabi-Yau compactifications, Nuclear Phys. B 309 (1988), no. 2, 295–316. MR 967477, DOI 10.1016/0550-3213(88)90084-3
- Lance J. Dixon, Some world-sheet properties of superstring compactifications, on orbifolds and otherwise, Superstrings, unified theories and cosmology 1987 (Trieste, 1987) ICTP Ser. Theoret. Phys., vol. 4, World Sci. Publ., Teaneck, NJ, 1988, pp. 67–126. MR 1104035 G. Ellingsrud and S. A. Strømme, The number of twisted cubic curves on the general quintic threefold, University of Bergen Report no. 63-7-2-1992.
- Robert Friedman and Francesco Scattone, Type $\textrm {III}$ degenerations of $K3$ surfaces, Invent. Math. 83 (1986), no. 1, 1–39. MR 813580, DOI 10.1007/BF01388751
- Doron Gepner, Exactly solvable string compactifications on manifolds of $\textrm {SU}(N)$ holonomy, Phys. Lett. B 199 (1987), no. 3, 380–388. MR 929596, DOI 10.1016/0370-2693(87)90938-5
- B. R. Greene and M. R. Plesser, Duality in Calabi-Yau moduli space, Nuclear Phys. B 338 (1990), no. 1, 15–37. MR 1059831, DOI 10.1016/0550-3213(90)90622-K
- B. R. Greene, C. Vafa, and N. P. Warner, Calabi-Yau manifolds and renormalization group flows, Nuclear Phys. B 324 (1989), no. 2, 371–390. MR 1025421, DOI 10.1016/0550-3213(89)90471-9
- Phillip Griffiths (ed.), Topics in transcendental algebraic geometry, Annals of Mathematics Studies, vol. 106, Princeton University Press, Princeton, NJ, 1984. MR 756842, DOI 10.1515/9781400881659
- Sheldon Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math. 60 (1986), no. 2, 151–162. MR 868135
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- Alan Landman, On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities, Trans. Amer. Math. Soc. 181 (1973), 89–126. MR 344248, DOI 10.1090/S0002-9947-1973-0344248-1
- Wolfgang Lerche, Cumrun Vafa, and Nicholas P. Warner, Chiral rings in $N=2$ superconformal theories, Nuclear Phys. B 324 (1989), no. 2, 427–474. MR 1025424, DOI 10.1016/0550-3213(89)90474-4
- D. G. Markushevich, M. A. Olshanetsky, and A. M. Perelomov, Description of a class of superstring compactifications related to semisimple Lie algebras, Comm. Math. Phys. 111 (1987), no. 2, 247–274. MR 899851
- Emil J. Martinec, Algebraic geometry and effective Lagrangians, Phys. Lett. B 217 (1989), no. 4, 431–437. MR 981536, DOI 10.1016/0370-2693(89)90074-9
- Emil J. Martinec, Criticality, catastrophes, and compactifications, Physics and mathematics of strings, World Sci. Publ., Teaneck, NJ, 1990, pp. 389–433. MR 1104265
- Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, DOI 10.2969/aspm/00110131
- Miles Reid, The moduli space of $3$-folds with $K=0$ may nevertheless be irreducible, Math. Ann. 278 (1987), no. 1-4, 329–334. MR 909231, DOI 10.1007/BF01458074
- Shi-Shyr Roan, On the generalization of Kummer surfaces, J. Differential Geom. 30 (1989), no. 2, 523–537. MR 1010170
- Shi-Shyr Roan, On Calabi-Yau orbifolds in weighted projective spaces, Internat. J. Math. 1 (1990), no. 2, 211–232. MR 1060636, DOI 10.1142/S0129167X90000137
- Shi-Shyr Roan, The mirror of Calabi-Yau orbifold, Internat. J. Math. 2 (1991), no. 4, 439–455. MR 1113571, DOI 10.1142/S0129167X91000259
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Chad Schoen, On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle, J. Reine Angew. Math. 364 (1986), 85–111. MR 817640, DOI 10.1515/crll.1986.364.85
- Andrew Strominger and Edward Witten, New manifolds for superstring compactification, Comm. Math. Phys. 101 (1985), no. 3, 341–361. MR 815189
- J. G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), no. 3, 352–353. MR 554402, DOI 10.1112/blms/11.3.352
- Gang Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646. MR 915841
- Andrey N. Todorov, The Weil-Petersson geometry of the moduli space of $\textrm {SU}(n\geq 3)$ (Calabi-Yau) manifolds. I, Comm. Math. Phys. 126 (1989), no. 2, 325–346. MR 1027500
- Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 451180, DOI 10.1073/pnas.74.5.1798
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 223-247
- MSC: Primary 14J30; Secondary 14D07, 14J15, 32G20, 32G81, 32J17
- DOI: https://doi.org/10.1090/S0894-0347-1993-1179538-2
- MathSciNet review: 1179538