Complexity of Bézout’s theorem. I. Geometric aspects
HTML articles powered by AMS MathViewer
- by Michael Shub and Steve Smale
- J. Amer. Math. Soc. 6 (1993), 459-501
- DOI: https://doi.org/10.1090/S0894-0347-1993-1175980-4
- PDF | Request permission
References
- Eugene L. Allgower and Kurt Georg, Numerical continuation methods, Springer Series in Computational Mathematics, vol. 13, Springer-Verlag, Berlin, 1990. An introduction. MR 1059455, DOI 10.1007/978-3-642-61257-2
- W. Dale Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math. (2) 126 (1987), no. 3, 577–591. MR 916719, DOI 10.2307/1971361
- John Canny, Generalised characteristic polynomials, J. Symbolic Comput. 9 (1990), no. 3, 241–250. MR 1056626, DOI 10.1016/S0747-7171(08)80012-0
- James Weldon Demmel, On condition numbers and the distance to the nearest ill-posed problem, Numer. Math. 51 (1987), no. 3, 251–289. MR 895087, DOI 10.1007/BF01400115
- James W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp. 50 (1988), no. 182, 449–480. MR 929546, DOI 10.1090/S0025-5718-1988-0929546-7 C. Eckart and G.Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), 211-218. C. Garcia and W. Zangwill, Pathways to solutions, fixed points, and equilibria, Prentice Hall, Englewood Cliffs, NJ, 1981.
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- D. Yu. Grigor′ev, Computational complexity in polynomial algebra, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1452–1460. MR 934349
- Joos Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci. 24 (1983), no. 3, 239–277. MR 716823, DOI 10.1016/0304-3975(83)90002-6
- Morris W. Hirsch and Stephen Smale, On algorithms for solving $f(x)=0$, Comm. Pure Appl. Math. 32 (1979), no. 3, 281–313. MR 517937, DOI 10.1002/cpa.3160320302 D. Ierardi, Quantifier elimination in the first-order theory of algebraically closed fields, Proc. 21st Annual ACM Sympos. on the Theory of Computing and Ph.D. Thesis, Cornell University (Computer Science).
- Herbert B. Keller, Global homotopies and Newton methods, Recent advances in numerical analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 41, Academic Press, New York-London, 1978, pp. 73–94. MR 519057 Eric Kostlan, Random polynomials and the statistical fundamental theorem of algebra, Preprint, Univ. of Hawaii (1987).
- Serge Lang, Real analysis, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. MR 783635
- Tien-Yien Li, Tim Sauer, and James A. Yorke, Numerical solution of a class of deficient polynomial systems, SIAM J. Numer. Anal. 24 (1987), no. 2, 435–451. MR 881375, DOI 10.1137/0724032
- Alexander Morgan, Solving polynomial systems using continuation for engineering and scientific problems, Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. MR 1049872 —, Polynomial continuation and its relationship to the symbolic reduction of polynomial systems, Preprint (1990).
- David Mumford, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties. MR 0453732
- J. Renegar, On the efficiency of Newton’s method in approximating all zeros of a system of complex polynomials, Math. Oper. Res. 12 (1987), no. 1, 121–148. MR 882846, DOI 10.1287/moor.12.1.121
- James Renegar, On the worst-case arithmetic complexity of approximating zeros of systems of polynomials, SIAM J. Comput. 18 (1989), no. 2, 350–370. MR 986672, DOI 10.1137/0218024
- James Renegar and Michael Shub, Unified complexity analysis for Newton LP methods, Math. Programming 53 (1992), no. 1, Ser. A, 1–16. MR 1151762, DOI 10.1007/BF01585691 H. Royden, Newton’s method, Preprint (1986). M. Shub, Some remarks on Bezout’s theorem and complexity theory, From Topology to Computation, Proc. of the Smalefest (M. Hirsch, J. Marsden, and M. Shub, eds.) (to appear).
- Mike Shub and Steven Smale, Computational complexity. On the geometry of polynomials and a theory of cost. I, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 1, 107–142. MR 803197, DOI 10.24033/asens.1486
- M. Shub and S. Smale, Computational complexity: on the geometry of polynomials and a theory of cost. II, SIAM J. Comput. 15 (1986), no. 1, 145–161. MR 822199, DOI 10.1137/0215011
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1–36. MR 590817, DOI 10.1090/S0273-0979-1981-14858-8
- Steve Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 87–121. MR 799791, DOI 10.1090/S0273-0979-1985-15391-1 —, Newton’s method estimates from data at one point, The Merging of Disciplines: New Directions in Pure, Applied and Computation Math (Ewing, R., Gross, K. and Martin, C. eds.), Springer-Verlag, New York, 1986.
- Steve Smale, Algorithms for solving equations, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 172–195. MR 934223
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972 Xinghua Wang and DanFu Han, Precise point estimates on continuous complexity theory, Preprint, Hangzhou Univ. (1986).
- J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0161456
- Alden H. Wright, Finding all solutions to a system of polynomial equations, Math. Comp. 44 (1985), no. 169, 125–133. MR 771035, DOI 10.1090/S0025-5718-1985-0771035-4
- Walter Zulehner, A simple homotopy method for determining all isolated solutions to polynomial systems, Math. Comp. 50 (1988), no. 181, 167–177. MR 917824, DOI 10.1090/S0025-5718-1988-0917824-7
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 459-501
- MSC: Primary 65H20; Secondary 58F14
- DOI: https://doi.org/10.1090/S0894-0347-1993-1175980-4
- MathSciNet review: 1175980