Isomorphism conjectures in algebraic $K$-theory
HTML articles powered by AMS MathViewer
- by F. T. Farrell and L. E. Jones
- J. Amer. Math. Soc. 6 (1993), 249-297
- DOI: https://doi.org/10.1090/S0894-0347-1993-1179537-0
- PDF | Request permission
References
- Douglas R. Anderson and W. C. Hsiang, The functors $K_{-i}$ and pseudo-isotopies of polyhedra, Ann. of Math. (2) 105 (1977), no. 2, 201–223. MR 440573, DOI 10.2307/1970997
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Paul Baum and Alain Connes, $K$-theory for discrete groups, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge Univ. Press, Cambridge, 1988, pp. 1–20. MR 996437, DOI 10.1007/978-1-4612-3762-4_{1}
- Paul Baum and Alain Connes, Chern character for discrete groups, A fête of topology, Academic Press, Boston, MA, 1988, pp. 163–232. MR 928402, DOI 10.1016/B978-0-12-480440-1.50015-0 M. Bokstedt, W.-c. Hsiang, and I. Madsen, Cyclotomic trace and the $K$-theoretic analogue of Novikov’s conjecture, preprint.
- William Browder, Manifolds with $\pi _{1}=Z$, Bull. Amer. Math. Soc. 72 (1966), 238–244. MR 190940, DOI 10.1090/S0002-9904-1966-11482-9
- D. Burghelea and R. Lashof, Stability of concordances and the suspension homomorphism, Ann. of Math. (2) 105 (1977), no. 3, 449–472. MR 438365, DOI 10.2307/1970919
- Sylvain E. Cappell, Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974), 1193–1198. MR 356091, DOI 10.1090/S0002-9904-1974-13673-6
- David W. Carter, Lower $K$-theory of finite groups, Comm. Algebra 8 (1980), no. 20, 1927–1937. MR 590500, DOI 10.1080/00927878008822554
- Frank Connolly and Tadeusz Koźniewski, Finiteness properties of classifying spaces of proper $\Gamma$-actions, J. Pure Appl. Algebra 41 (1986), no. 1, 17–36. MR 844461, DOI 10.1016/0022-4049(86)90097-6
- George E. Cooke and Ross L. Finney, Homology of cell complexes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1967. Based on lectures by Norman E. Steenrod. MR 0219059, DOI 10.1515/9781400877751
- F. T. Farrell and W. C. Hsiang, Manifolds with $\pi _{i}=G\times \alpha T$, Amer. J. Math. 95 (1973), 813–848. MR 385867, DOI 10.2307/2373698 —, The Whitehead groups of poly-(finite by cyclic) groups, J. London Math. Soc. (2) 24 (1982), 308-324. —, On Novikov’s conjecture for cocompact discrete subgroups of a Lie group, Lecture Notes in Math., vol. 1051, Springer-Verlag, New York, 1984, pp. 38-48.
- F. T. Farrell and W. C. Hsiang, Addendum to: “On Novikov’s conjecture for cocompact subgroups of a Lie group” [Algebraic topology, Aarhus 1982, 38–48, Lecture Notes in Math., 1051, Springer, Berlin, 1984; MR0764575 (86c:57032)], Topology Appl. 26 (1987), no. 1, 93–95. MR 893806, DOI 10.1016/0166-8641(87)90028-9
- F. T. Farrell and L. E. Jones, Foliated control theory. I, II, $K$-Theory 2 (1988), no. 3, 357–430. MR 972605, DOI 10.1007/BF00533389
- F. T. Farrell and L. E. Jones, A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257–370. MR 973309, DOI 10.1090/S0894-0347-1989-0973309-4
- F. T. Farrell and L. E. Jones, The surgery $L$-groups of poly-(finite or cyclic) groups, Invent. Math. 91 (1988), no. 3, 559–586. MR 928498, DOI 10.1007/BF01388787
- F. T. Farrell and L. E. Jones, $K$-theory and dynamics. I, Ann. of Math. (2) 124 (1986), no. 3, 531–569. MR 866708, DOI 10.2307/2007092
- F. T. Farrell and L. E. Jones, Algebraic $K$-theory of spaces stratified fibered over hyperbolic orbifolds, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 15, 5364–5366. MR 851508, DOI 10.1073/pnas.83.15.5364
- F. T. Farrell and L. E. Jones, Algebraic $K$-theory of discrete subgroups of Lie groups, Proc. Nat. Acad. Sci. U.S.A. 84 (1987), no. 10, 3095–3096. MR 887290, DOI 10.1073/pnas.84.10.3095
- F. T. Farrell and L. E. Jones, A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257–370. MR 973309, DOI 10.1090/S0894-0347-1989-0973309-4
- F. T. Farrell and L. E. Jones, Computations of stable pseudoisotopy spaces for aspherical manifolds, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 59–74. MR 1133892, DOI 10.1007/BFb0084737 —, Pseudoisotopy spaces of special affine manifolds, work in progress.
- F. T. Farrell and L. E. Jones, Stable pseudoisotopy spaces of compact non-positively curved manifolds, J. Differential Geom. 34 (1991), no. 3, 769–834. MR 1139646, DOI 10.4310/jdg/1214447541 —, Topological rigidity for compact non-positively curved manifolds, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI (in press). —, The lower algebraic $K$-theory of virtually $\infty$-cyclic groups, submitted for publication.
- S. M. Gersten, On the spectrum of algebraic $K$-theory, Bull. Amer. Math. Soc. 78 (1972), 216–219. MR 299657, DOI 10.1090/S0002-9904-1972-12924-0 T. Goodwillie, unpublished.
- A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21. MR 520490
- Wu Chung Hsiang, Geometric applications of algebraic $K$-theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 99–118. MR 804679 —, Borel’s conjecture, Novikov’s conjecture and the $K$-theoretic analogue, World Scientific book, Singapore. B. Hu, Ph.D thesis, SUNY at Stony Brook, 1989. —, A P L geometric study of algebraic $K$-theory, Trans. Amer. Math. Soc. (to appear). —, Whitehead groups of finite polyhedra with non-positive curvature, J. Differential Geom. (to appear). —, unpublished.
- I. M. James, Ex-homotopy theory. I, Illinois J. Math. 15 (1971), 324–337. MR 296945, DOI 10.1215/ijm/1256052718 L. E. Jones, The non-simply connected characteristic variety theorem, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, RI, 1978, pp. 131-140.
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432–446. MR 87037, DOI 10.2307/1970055
- Andrew J. Nicas, On the higher Whitehead groups of a Bieberbach group, Trans. Amer. Math. Soc. 287 (1985), no. 2, 853–859. MR 768746, DOI 10.1090/S0002-9947-1985-0768746-X
- Andrew J. Nicas, Induction theorems for groups of homotopy manifold structures, Mem. Amer. Math. Soc. 39 (1982), no. 267, vi+108. MR 668807, DOI 10.1090/memo/0267
- Erik K. Pedersen and Charles A. Weibel, A nonconnective delooping of algebraic $K$-theory, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 166–181. MR 802790, DOI 10.1007/BFb0074443
- Richard S. Palais, Imbedding of compact, differentiable transformation groups in orthogonal representations, J. Math. Mech. 6 (1957), 673–678. MR 0092927, DOI 10.1512/iumj.1957.6.56037
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- A. A. Ranicki, Algebraic $L$-theory. I. Foundations, Proc. London Math. Soc. (3) 27 (1973), 101–125. MR 414661, DOI 10.1112/plms/s3-27.1.101
- Dennis Sullivan, Geometric periodicity and the invariants of manifolds, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 44–75. MR 0285012
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Frank Quinn, A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 500–511. MR 0282375
- Frank Quinn, Ends of maps. II, Invent. Math. 68 (1982), no. 3, 353–424. MR 669423, DOI 10.1007/BF01389410 —, Assembly maps in bordism type theories, preprint.
- Frank Quinn, Algebraic $K$-theory of poly-(finite or cyclic) groups, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 221–226. MR 776473, DOI 10.1090/S0273-0979-1985-15353-4
- Frank Quinn, Applications of topology with control, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 598–606. MR 934261
- J. B. Wagoner, Delooping classifying spaces in algebraic $K$-theory, Topology 11 (1972), 349–370. MR 354816, DOI 10.1016/0040-9383(72)90031-6
- Friedhelm Waldhausen, Algebraic $K$-theory of generalized free products. I, II, Ann. of Math. (2) 108 (1978), no. 1, 135–204. MR 498807, DOI 10.2307/1971165
- Friedhelm Waldhausen, Algebraic $K$-theory of topological spaces. I, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 35–60. MR 520492
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216 J. A. Wolf, Spaces of constant curvature, Publish or Perish, Berkeley, CA, 1977.
- Masayuki Yamasaki, $L$-groups of crystallographic groups, Invent. Math. 88 (1987), no. 3, 571–602. MR 884801, DOI 10.1007/BF01391832 —, $L$-groups of certain virtually solvable groups, Topology Appl. 33 (1989).
- Hans Zassenhaus, Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv. 21 (1948), 117–141 (German). MR 24424, DOI 10.1007/BF02568029
- C. A. Weibel, Mayer-Vietoris sequences and module structures on $NK_\ast$, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 466–493. MR 618317, DOI 10.1007/BFb0089534
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 249-297
- MSC: Primary 57N37; Secondary 19D55
- DOI: https://doi.org/10.1090/S0894-0347-1993-1179537-0
- MathSciNet review: 1179537