Tensor structures arising from affine Lie algebras. I
HTML articles powered by AMS MathViewer
- by D. Kazhdan and G. Lusztig
- J. Amer. Math. Soc. 6 (1993), 905-947
- DOI: https://doi.org/10.1090/S0894-0347-1993-99999-X
- PDF | Request permission
Part II: J. Amer. Math. Soc. (1993), 949-1011
Part III: J. Amer. Math. Soc. (1994), 335-381
Part IV: J. Amer. Math. Soc. (1994), 383-453
References
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X A. Beilinson, B. Feigin, and B. Mazur, Introduction to algebraic field theory on curves, preprint.
- V. G. Drinfel′d, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$, Algebra i Analiz 2 (1990), no. 4, 149–181 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 4, 829–860. MR 1080203
- Victor G. Kac, Infinite-dimensional Lie algebras, Progress in Mathematics, vol. 44, Birkhäuser Boston, Inc., Boston, MA, 1983. An introduction. MR 739850, DOI 10.1007/978-1-4757-1382-4
- V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, vol. 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1021978
- David Kazhdan and George Lusztig, Affine Lie algebras and quantum groups, Internat. Math. Res. Notices 2 (1991), 21–29. MR 1104840, DOI 10.1155/S1073792891000041
- V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), no. 1, 83–103. MR 853258, DOI 10.1016/0550-3213(84)90374-2
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038 P. Polo, Projective versus injective modules over graded Lie algebras and a particular parabolic category $O$ for affine Kac-Moody algebras, preprint.
- Alvany Rocha-Caridi and Nolan R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 180 (1982), no. 2, 151–177. MR 661694, DOI 10.1007/BF01318901 W. Soergel, Construction of projectives and reciprocity in an abstract setting, preprint.
- Akihiro Tsuchiya and Yukihiro Kanie, Vertex operators in conformal field theory on $\textbf {P}^1$ and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372. MR 972998, DOI 10.2969/aspm/01610297
- Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459–566. MR 1048605, DOI 10.2969/aspm/01910459
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 905-947
- MSC: Primary 17B67; Secondary 17B37
- DOI: https://doi.org/10.1090/S0894-0347-1993-99999-X
- MathSciNet review: 1186962