Invariants on projective space
HTML articles powered by AMS MathViewer
- by A. Rod Gover PDF
- J. Amer. Math. Soc. 7 (1994), 145-158 Request permission
References
- T.N. Bailey, M.G. Eastwood, and C.R. Graham, Invariant theory for conformal and CR geometry, Ann. of Math. (2), to appear.
R. Bott., Homogeneous vector bundles, Ann. of Math. (2) 60 (1957), 203-248.
M. G. Eastwood and C. R. Graham, Invariants of conformal densities, Duke Math. J. 63 (1991), 633-671.
C. Fefferman, Parabolic invariant theory in complex analysis, Adv. Math. 31 (1979), 131-162.
J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Text. Math. vol. 9, Springer, Berlin, Heidelberg, and New York, 1972.
R. Penrose and W. Rindler, Spinors and space-time, vol. I: Two-spinor calculus and relativistic fields, Cambridge Univ. Press, London and New York, 1984.
J. P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197-278.
H. Weyl, The classical groups, Princeton University Press, Princeton, NJ, 1946.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc. 7 (1994), 145-158
- MSC: Primary 53A55; Secondary 53A20, 53C30
- DOI: https://doi.org/10.1090/S0894-0347-1994-1214703-8
- MathSciNet review: 1214703