Asymptotic completeness of $N$-particle long-range scattering
HTML articles powered by AMS MathViewer
- by I. M. Sigal and A. Soffer
- J. Amer. Math. Soc. 7 (1994), 307-334
- DOI: https://doi.org/10.1090/S0894-0347-1994-1233895-8
- PDF | Request permission
Abstract:
We prove asymptotic completeness for $N$-particle long-range system with potentials vanishing as $O({\left | x \right |^{ - \mu }})$, where $\mu \geq 1 - {2^{ - N - 2}}$, at infinity.References
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643, DOI 10.1007/978-3-540-77522-5
- Jan DereziĆski, A new proof of the propagation theorem for $N$-body quantum systems, Comm. Math. Phys. 122 (1989), no. 2, 203â231. MR 994502, DOI 10.1007/BF01257413
- Jan DereziĆski, Algebraic approach to the $N$-body long range scattering, Rev. Math. Phys. 3 (1991), no. 1, 1â62. MR 1110555, DOI 10.1142/S0129055X91000026 â, Private communication, July 1991.
- Volker Enss, Asymptotic observables on scattering states, Comm. Math. Phys. 89 (1983), no. 2, 245â268. MR 709466, DOI 10.1007/BF01211831
- Volker Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range, Schrödinger operators (Como, 1984) Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 39â176. MR 824987, DOI 10.1007/BFb0080332
- Volker Enss, Two- and three-body quantum scattering: completeness revisited, Symposium âPartial Differential Equationsâ (Holzhau, 1988) Teubner-Texte Math., vol. 112, Teubner, Leipzig, 1989, pp. 108â120. MR 1105802 C. GĂ©rard and J. Derezinski, A remark on asymptotic clustering for $N$-particle quantum systems, preprint, Ăcole Polytech., Paris, 1991.
- Gian Michele Graf, Asymptotic completeness for $N$-body short-range quantum systems: a new proof, Comm. Math. Phys. 132 (1990), no. 1, 73â101. MR 1069201, DOI 10.1007/BF02278000
- Ă. Mourre, Operateurs conjuguĂ©s et propriĂ©tĂ©s de propagation, Comm. Math. Phys. 91 (1983), no. 2, 279â300 (French, with English summary). MR 723552, DOI 10.1007/BF01211163
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- I. M. Sigal, Mathematical questions of quantum many-body theory, SĂ©minaire sur les Ă©quations aux dĂ©rivĂ©es partielles 1986â1987, Ăcole Polytech., Palaiseau, 1987, pp. Exp. No. XXIII, 24. MR 920041
- I. M. Sigal, On long-range scattering, Duke Math. J. 60 (1990), no. 2, 473â496. MR 1047762, DOI 10.1215/S0012-7094-90-06019-3
- I. M. Sigal and A. Soffer, The $N$-particle scattering problem: asymptotic completeness for short-range systems, Ann. of Math. (2) 126 (1987), no. 1, 35â108. MR 898052, DOI 10.2307/1971345
- I. M. Sigal and A. Soffer, Asymptotic completeness of multiparticle scattering, Differential equations and mathematical physics (Birmingham, Ala., 1986) Lecture Notes in Math., vol. 1285, Springer, Berlin, 1987, pp. 435â472. MR 921295, DOI 10.1007/BFb0080623
- I. M. Sigal and A. Soffer, Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent. Math. 99 (1990), no. 1, 115â143. MR 1029392, DOI 10.1007/BF01234414 â, Local decay and velocity bounds, preprint. â, Asymptotic completeness for Coulomb-type $3$-body systems, preprint, Princeton, 1991.
- I. M. Sigal and A. Soffer, Asymptotic completeness for $N\leq 4$ particle systems with the Coulomb-type interactions, Duke Math. J. 71 (1993), no. 1, 243â298. MR 1230292, DOI 10.1215/S0012-7094-93-07110-4 A. G. Sigalov and I. M. Sigal, Description of the spectrum of the energy operator of quantum mechanical systems invariant under permutations of identical particles, Theoret. and Math. Phys. 5 (1970), 990-1005.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc. 7 (1994), 307-334
- MSC: Primary 81U10; Secondary 47A40, 47N50
- DOI: https://doi.org/10.1090/S0894-0347-1994-1233895-8
- MathSciNet review: 1233895