## Asymptotic completeness of $N$-particle long-range scattering

HTML articles powered by AMS MathViewer

- by I. M. Sigal and A. Soffer PDF
- J. Amer. Math. Soc.
**7**(1994), 307-334 Request permission

## Abstract:

We prove asymptotic completeness for $N$-particle long-range system with potentials vanishing as $O({\left | x \right |^{ - \mu }})$, where $\mu \geq 1 - {2^{ - N - 2}}$, at infinity.## References

- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,
*SchrĂ¶dinger operators with application to quantum mechanics and global geometry*, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR**883643**, DOI 10.1007/978-3-540-77522-5 - Jan DereziĆski,
*A new proof of the propagation theorem for $N$-body quantum systems*, Comm. Math. Phys.**122**(1989), no.Â 2, 203â231. MR**994502**, DOI 10.1007/BF01257413 - Jan DereziĆski,
*Algebraic approach to the $N$-body long range scattering*, Rev. Math. Phys.**3**(1991), no.Â 1, 1â62. MR**1110555**, DOI 10.1142/S0129055X91000026
â, Private communication, July 1991.
- Volker Enss,
*Asymptotic observables on scattering states*, Comm. Math. Phys.**89**(1983), no.Â 2, 245â268. MR**709466**, DOI 10.1007/BF01211831 - Volker Enss,
*Quantum scattering theory for two- and three-body systems with potentials of short and long range*, SchrĂ¶dinger operators (Como, 1984) Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp.Â 39â176. MR**824987**, DOI 10.1007/BFb0080332 - Volker Enss,
*Two- and three-body quantum scattering: completeness revisited*, Symposium âPartial Differential Equationsâ (Holzhau, 1988) Teubner-Texte Math., vol. 112, Teubner, Leipzig, 1989, pp.Â 108â120. MR**1105802**
C. GĂ©rard and J. Derezinski, - Gian Michele Graf,
*Asymptotic completeness for $N$-body short-range quantum systems: a new proof*, Comm. Math. Phys.**132**(1990), no.Â 1, 73â101. MR**1069201**, DOI 10.1007/BF02278000 - Ă. Mourre,
*Operateurs conjuguĂ©s et propriĂ©tĂ©s de propagation*, Comm. Math. Phys.**91**(1983), no.Â 2, 279â300 (French, with English summary). MR**723552**, DOI 10.1007/BF01211163 - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I*, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR**751959** - I. M. Sigal,
*Mathematical questions of quantum many-body theory*, SĂ©minaire sur les Ă©quations aux dĂ©rivĂ©es partielles 1986â1987, Ăcole Polytech., Palaiseau, 1987, pp.Â Exp. No. XXIII, 24. MR**920041** - I. M. Sigal,
*On long-range scattering*, Duke Math. J.**60**(1990), no.Â 2, 473â496. MR**1047762**, DOI 10.1215/S0012-7094-90-06019-3 - I. M. Sigal and A. Soffer,
*The $N$-particle scattering problem: asymptotic completeness for short-range systems*, Ann. of Math. (2)**126**(1987), no.Â 1, 35â108. MR**898052**, DOI 10.2307/1971345 - I. M. Sigal and A. Soffer,
*Asymptotic completeness of multiparticle scattering*, Differential equations and mathematical physics (Birmingham, Ala., 1986) Lecture Notes in Math., vol. 1285, Springer, Berlin, 1987, pp.Â 435â472. MR**921295**, DOI 10.1007/BFb0080623 - I. M. Sigal and A. Soffer,
*Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials*, Invent. Math.**99**(1990), no.Â 1, 115â143. MR**1029392**, DOI 10.1007/BF01234414
â, - I. M. Sigal and A. Soffer,
*Asymptotic completeness for $N\leq 4$ particle systems with the Coulomb-type interactions*, Duke Math. J.**71**(1993), no.Â 1, 243â298. MR**1230292**, DOI 10.1215/S0012-7094-93-07110-4
A. G. Sigalov and I. M. Sigal,

*A remark on asymptotic clustering for*$N$

*-particle quantum systems*, preprint, Ăcole Polytech., Paris, 1991.

*Local decay and velocity bounds*, preprint. â,

*Asymptotic completeness for Coulomb-type*$3$

*-body systems*, preprint, Princeton, 1991.

*Description of the spectrum of the energy operator of quantum mechanical systems invariant under permutations of identical particles*, Theoret. and Math. Phys.

**5**(1970), 990-1005.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**7**(1994), 307-334 - MSC: Primary 81U10; Secondary 47A40, 47N50
- DOI: https://doi.org/10.1090/S0894-0347-1994-1233895-8
- MathSciNet review: 1233895