## Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group

HTML articles powered by AMS MathViewer

- by Anthony Carbery, Stephen Wainger and James Wright PDF
- J. Amer. Math. Soc.
**8**(1995), 141-179 Request permission

## References

- Anthony Carbery, James Vance, Stephen Wainger, and David Watson,
*The Hilbert transform and maximal function along flat curves, dilations, and differential equations*, Amer. J. Math.**116**(1994), no. 5, 1203–1239. MR**1296728**, DOI 10.2307/2374944 - Anthony Carbery, James Vance, Stephen Wainger, David Watson, and James Wright,
*$L^p$ estimates for operators associated to flat curves without the Fourier transform*, Pacific J. Math.**167**(1995), no. 2, 243–262. MR**1328328**
A. Carbery, J. Vance, S. Wainger, and J. Wright, - Anthony Carbery and Sarah Ziesler,
*Hilbert transforms and maximal functions along rough flat curves*, Rev. Mat. Iberoamericana**10**(1994), no. 2, 379–393. MR**1286480**, DOI 10.4171/RMI/156
M. Christ, - Michael Christ,
*Hilbert transforms along curves. I. Nilpotent groups*, Ann. of Math. (2)**122**(1985), no. 3, 575–596. MR**819558**, DOI 10.2307/1971330
M. Christ, A. Nagel, E. Stein, and S. Wainger, - Ronald R. Coifman and Guido Weiss,
*Analyse harmonique non-commutative sur certains espaces homogènes*, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR**0499948** - Alexander Nagel, Elias M. Stein, and Stephen Wainger,
*Hilbert transforms and maximal functions related to variable curves*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 95–98. MR**545242** - A. Nagel, E. M. Stein, and S. Wainger,
*Differentiation in lacunary directions*, Proc. Nat. Acad. Sci. U.S.A.**75**(1978), no. 3, 1060–1062. MR**466470**, DOI 10.1073/pnas.75.3.1060 - Fulvio Ricci and Elias M. Stein,
*Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds*, J. Funct. Anal.**78**(1988), no. 1, 56–84. MR**937632**, DOI 10.1016/0022-1236(88)90132-2 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Christopher D. Sogge and Elias M. Stein,
*Averages of functions over hypersurfaces in $\textbf {R}^n$*, Invent. Math.**82**(1985), no. 3, 543–556. MR**811550**, DOI 10.1007/BF01388869

*A variant of the notion of a space of homogeneous type*(to appear).

*Hilbert transforms along curves*, III.

*Rotational curvature*, preprint, 1985.

*Singular and maximal Radon transforms*, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ (to appear).

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**8**(1995), 141-179 - MSC: Primary 43A80; Secondary 22E20, 42B20, 42B25
- DOI: https://doi.org/10.1090/S0894-0347-1995-1273412-0
- MathSciNet review: 1273412