Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group
HTML articles powered by AMS MathViewer
- by Anthony Carbery, Stephen Wainger and James Wright
- J. Amer. Math. Soc. 8 (1995), 141-179
- DOI: https://doi.org/10.1090/S0894-0347-1995-1273412-0
- PDF | Request permission
References
- Anthony Carbery, James Vance, Stephen Wainger, and David Watson, The Hilbert transform and maximal function along flat curves, dilations, and differential equations, Amer. J. Math. 116 (1994), no. 5, 1203–1239. MR 1296728, DOI 10.2307/2374944
- Anthony Carbery, James Vance, Stephen Wainger, David Watson, and James Wright, $L^p$ estimates for operators associated to flat curves without the Fourier transform, Pacific J. Math. 167 (1995), no. 2, 243–262. MR 1328328 A. Carbery, J. Vance, S. Wainger, and J. Wright, A variant of the notion of a space of homogeneous type (to appear).
- Anthony Carbery and Sarah Ziesler, Hilbert transforms and maximal functions along rough flat curves, Rev. Mat. Iberoamericana 10 (1994), no. 2, 379–393. MR 1286480, DOI 10.4171/RMI/156 M. Christ, Hilbert transforms along curves, III. Rotational curvature, preprint, 1985.
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330 M. Christ, A. Nagel, E. Stein, and S. Wainger, Singular and maximal Radon transforms, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ (to appear).
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Hilbert transforms and maximal functions related to variable curves, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 95–98. MR 545242
- A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. MR 466470, DOI 10.1073/pnas.75.3.1060
- Fulvio Ricci and Elias M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), no. 1, 56–84. MR 937632, DOI 10.1016/0022-1236(88)90132-2
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Christopher D. Sogge and Elias M. Stein, Averages of functions over hypersurfaces in $\textbf {R}^n$, Invent. Math. 82 (1985), no. 3, 543–556. MR 811550, DOI 10.1007/BF01388869
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 141-179
- MSC: Primary 43A80; Secondary 22E20, 42B20, 42B25
- DOI: https://doi.org/10.1090/S0894-0347-1995-1273412-0
- MathSciNet review: 1273412