Invariant differential operators and an homomorphism of Harish-Chandra
HTML articles powered by AMS MathViewer
- by T. Levasseur and J. T. Stafford PDF
- J. Amer. Math. Soc. 8 (1995), 365-372 Request permission
References
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120.
—, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534-564.
—, Invariant eigendistributions on a semi-simple Lie algebra, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 5-54.
G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math., vol. 116, Pitman, Boston, 1985.
T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc. 412 (1989).
J. C. McConnell and J. C. Robson, Non-commutative Noetherian rings, Wiley-Interscience, Chichester, 1987.
S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Math., vol. 818, Springer-Verlag, Berlin and New York, 1980.
N. R. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc. 6 (1993), 779-816.
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 365-372
- MSC: Primary 22E47; Secondary 14L30, 16S32
- DOI: https://doi.org/10.1090/S0894-0347-1995-1284849-8
- MathSciNet review: 1284849