Invariant differential operators and an homomorphism of Harish-Chandra
HTML articles powered by AMS MathViewer
- by T. Levasseur and J. T. Stafford
- J. Amer. Math. Soc. 8 (1995), 365-372
- DOI: https://doi.org/10.1090/S0894-0347-1995-1284849-8
- PDF | Request permission
References
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 84104, DOI 10.2307/2372387
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023 —, Invariant eigendistributions on a semi-simple Lie algebra, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 5-54.
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc. 81 (1989), no. 412, vi+117. MR 988083, DOI 10.1090/memo/0412
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Susan Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR 590245
- Nolan R. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc. 6 (1993), no. 4, 779–816. MR 1212243, DOI 10.1090/S0894-0347-1993-1212243-2
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 365-372
- MSC: Primary 22E47; Secondary 14L30, 16S32
- DOI: https://doi.org/10.1090/S0894-0347-1995-1284849-8
- MathSciNet review: 1284849