Geometric invariant theory and flips
HTML articles powered by AMS MathViewer
- by Michael Thaddeus PDF
- J. Amer. Math. Soc. 9 (1996), 691-723 Request permission
Abstract:
We study the dependence of geometric invariant theory quotients on the choice of a linearization. We show that, in good cases, two such quotients are related by a flip in the sense of Mori, and explain the relationship with the minimal model program. Moreover, we express the flip as the blow-up and blow-down of specific ideal sheaves, leading, under certain hypotheses, to a quite explicit description of the flip. We apply these ideas to various familiar moduli problems, recovering results of Kirwan, Boden-Hu, Bertram-Daskalopoulos-Wentworth, and the author. Along the way we display a chamber structure, following Duistermaat-Heckman, on the space of all linearizations. We also give a new, easy proof of the Bialynicki-Birula decomposition theorem.References
- M. F. Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London Ser. A 247 (1958), 237–244. MR 95974, DOI 10.1098/rspa.1958.0181
- A. Bertram, G. Daskalopoulos, and R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc., to appear.
- U. N. Bhosle, Parabolic vector bundles on curves, Ark. Mat. 27 (1989), no. 1, 15–22. MR 1004718, DOI 10.1007/BF02386356
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI 10.2307/1970915
- Steven B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33 (1991), no. 1, 169–213. MR 1085139
- Steven B. Bradlow and Georgios D. Daskalopoulos, Moduli of stable pairs for holomorphic bundles over Riemann surfaces, Internat. J. Math. 2 (1991), no. 5, 477–513. MR 1124279, DOI 10.1142/S0129167X91000272
- Michel Brion and Claudio Procesi, Action d’un tore dans une variété projective, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 509–539 (French). MR 1103602, DOI 10.1007/s101070100288
- H. Boden and Y. Hu, Variation of moduli of parabolic bundles, Math. Ann., to appear.
- I. Dolgachev and Y. Hu, Variation of geometric invariant theory quotients, preprint.
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, DOI 10.1007/BF01850655
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1977), no. 1, 45–60. MR 466475, DOI 10.2307/1971157
- Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991; Astérisque No. 211 (1992) (1992). MR 1225842
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Domingo Luna, Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 0342523, DOI 10.24033/msmf.110
- I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319–343. MR 151460, DOI 10.1016/0040-9383(62)90019-8
- V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205–239. MR 575939, DOI 10.1007/BF01420526
- Shigefumi Mori, Flip theorem and the existence of minimal models for $3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, DOI 10.1090/S0894-0347-1988-0924704-X
- David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371, DOI 10.1007/978-3-642-96676-7
- P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978. MR 546290
- C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. (2) 95 (1972), 511–556; errata, ibid. (2) 96 (1972), 599. MR 309940, DOI 10.2307/1970870
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317–353. MR 1273268, DOI 10.1007/BF01232244
- Michael Thaddeus, Toric quotients and flips, Topology, geometry and field theory, World Sci. Publ., River Edge, NJ, 1994, pp. 193–213. MR 1312182
Additional Information
- Michael Thaddeus
- Affiliation: St. John’s College, Oxford, England
- Address at time of publication: Department of Mathematics, Harvard University, 1 Oxford St., Cambridge, Massachusetts 02138
- Email: thaddeus@math.harvard.edu
- Received by editor(s): November 11, 1994
- Received by editor(s) in revised form: March 23, 1995
- © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc. 9 (1996), 691-723
- MSC (1991): Primary 14L30, 14D20
- DOI: https://doi.org/10.1090/S0894-0347-96-00204-4
- MathSciNet review: 1333296