Geometric invariant theory and flips
Author:
Michael Thaddeus
Journal:
J. Amer. Math. Soc. 9 (1996), 691-723
MSC (1991):
Primary 14L30, 14D20
DOI:
https://doi.org/10.1090/S0894-0347-96-00204-4
MathSciNet review:
1333296
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the dependence of geometric invariant theory quotients on the choice of a linearization. We show that, in good cases, two such quotients are related by a flip in the sense of Mori, and explain the relationship with the minimal model program. Moreover, we express the flip as the blow-up and blow-down of specific ideal sheaves, leading, under certain hypotheses, to a quite explicit description of the flip. We apply these ideas to various familiar moduli problems, recovering results of Kirwan, Boden-Hu, Bertram-Daskalopoulos-Wentworth, and the author. Along the way we display a chamber structure, following Duistermaat-Heckman, on the space of all linearizations. We also give a new, easy proof of the Bialynicki-Birula decomposition theorem.
- 1. M. F. Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London Ser. A 247 (1958), 237–244. MR 95974, https://doi.org/10.1098/rspa.1958.0181
- 2. A. Bertram, G. Daskalopoulos, and R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc., to appear.
- 3. U. N. Bhosle, Parabolic vector bundles on curves, Ark. Mat. 27 (1989), no. 1, 15–22. MR 1004718, https://doi.org/10.1007/BF02386356
- 4. A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, https://doi.org/10.2307/1970915
- 5. Steven B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33 (1991), no. 1, 169–213. MR 1085139
- 6. Steven B. Bradlow and Georgios D. Daskalopoulos, Moduli of stable pairs for holomorphic bundles over Riemann surfaces, Internat. J. Math. 2 (1991), no. 5, 477–513. MR 1124279, https://doi.org/10.1142/S0129167X91000272
- 7. Michel Brion and Claudio Procesi, Action d’un tore dans une variété projective, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 509–539 (French). MR 1103602, https://doi.org/10.1007/s101070100288
- 8. H. Boden and Y. Hu, Variation of moduli of parabolic bundles, Math. Ann., to appear.
- 9. I. Dolgachev and Y. Hu, Variation of geometric invariant theory quotients, preprint.
- 10. J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, https://doi.org/10.1007/BF01850655
- 11. J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Inv. Math. 69 (1982) 259--268. Addendum: 72 (1983) 153--158. MR 84h:58051a,b
- 12. D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1977), no. 1, 45–60. MR 466475, https://doi.org/10.2307/1971157
- 13. Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991; Astérisque No. 211 (1992) (1992). MR 1225842
- 14. Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, https://doi.org/10.2748/tmj/1178244839
- 15. Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040
- 16. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- 17. Y. Hu, The geometry and topology of quotient varieties of torus actions, Duke Math. J. 68 (1992) 151--184. Erratum: 68 (1992) 609. MR 93k:14019a,b
- 18. Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741
- 19. Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81–105. Bull. Soc. Math. France, Paris, Mémoire 33 (French). MR 0342523, https://doi.org/10.24033/msmf.110
- 20. I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319–343. MR 151460, https://doi.org/10.1016/0040-9383(62)90019-8
- 21. V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205–239. MR 575939, https://doi.org/10.1007/BF01420526
- 22. Shigefumi Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, https://doi.org/10.1090/S0894-0347-1988-0924704-X
- 23. David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371
- 24. P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. MR 546290
- 25. C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. (2) 95 (1972), 511–556; errata, ibid. (2) 96 (1972), 599. MR 309940, https://doi.org/10.2307/1970870
- 26. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- 27. Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317–353. MR 1273268, https://doi.org/10.1007/BF01232244
- 28. Michael Thaddeus, Toric quotients and flips, Topology, geometry and field theory, World Sci. Publ., River Edge, NJ, 1994, pp. 193–213. MR 1312182
Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 14L30, 14D20
Retrieve articles in all journals with MSC (1991): 14L30, 14D20
Additional Information
Michael Thaddeus
Affiliation:
St. John’s College, Oxford, England
Address at time of publication:
Department of Mathematics, Harvard University, 1 Oxford St., Cambridge, Massachusetts 02138
Email:
thaddeus@math.harvard.edu
DOI:
https://doi.org/10.1090/S0894-0347-96-00204-4
Received by editor(s):
November 11, 1994
Received by editor(s) in revised form:
March 23, 1995
Article copyright:
© Copyright 1996
American Mathematical Society