Koszul Duality Patterns in Representation Theory
HTML articles powered by AMS MathViewer
- by Alexander Beilinson, Victor Ginzburg and Wolfgang Soergel PDF
- J. Amer. Math. Soc. 9 (1996), 473-527 Request permission
Abstract:
The aim of this paper is to work out a concrete example as well as to provide the general pattern of applications of Koszul duality to representation theory. The paper consists of three parts relatively independent of each other. The first part gives a reasonably selfcontained introduction to Koszul rings and Koszul duality. Koszul rings are certain $\mathbb {Z}$-graded rings with particularly nice homological properties which involve a kind of duality. Thus, to a Koszul ring one associates naturally the dual Koszul ring. The second part is devoted to an application to representation theory of semisimple Lie algebras. We show that the block of the Bernstein-Gelfand-Gelfand category $\mathcal {O}$ that corresponds to any fixed central character is governed by the Koszul ring. Moreover, the dual of that ring governs a certain subcategory of the category $\mathcal {O}$ again. This generalizes the selfduality theorem conjectured by Beilinson and Ginsburg in 1986 and proved by Soergel in 1990. In the third part we study certain categories of mixed perverse sheaves on a variety stratified by affine linear spaces. We provide a general criterion for such a category to be governed by a Koszul ring. In the flag variety case this reduces to the setup of part two. In the more general case of affine flag manifolds and affine Grassmannians the criterion should yield interesting results about representations of quantum groups and affine Lie algebras.References
- Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1162533, DOI 10.1007/978-1-4612-0383-4
- Jörgen Backelin, A distributiveness property of augmented algebras and some related homological results, Ph. D. Thesis, Stockholm, 1982.
- Dan Barbasch, Filtrations on Verma modules, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 489–494 (1984). MR 740080, DOI 10.24033/asens.1457
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- Joseph Bernstein, Trace in categories, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 417–423. MR 1103598
- Jörgen Backelin and Ralf Fröberg, Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures Appl. 30 (1985), no. 2, 85–97. MR 789425
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- Alexander A. Beilinson and Victor Ginsburg, Mixed categories, Ext-duality and representations (results and conjectures), Preprint, 1986.
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- A. A. Beĭlinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317–350. MR 1048505, DOI 10.1016/0393-0440(88)90028-9
- A. Beĭlinson, R. MacPherson, and V. Schechtman, Notes on motivic cohomology, Duke Math. J. 54 (1987), no. 2, 679–710. MR 899412, DOI 10.1215/S0012-7094-87-05430-5
- Intersection cohomology, Progress in Mathematics, vol. 50, Birkhäuser Boston, Inc., Boston, MA, 1984. Notes on the seminar held at the University of Bern, Bern, 1983; Swiss Seminars. MR 788171
- Luis G. Casian and David H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600. MR 900346, DOI 10.1007/BF01166705
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511–534. MR 1245719, DOI 10.2748/tmj/1178225846
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94. MR 888703, DOI 10.1090/memo/0367
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Ronald S. Irving, The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47–65. MR 944101, DOI 10.24033/asens.1550
- Ronald S. Irving, A filtered category ${\scr O}_S$ and applications, Mem. Amer. Math. Soc. 83 (1990), no. 419, vi+117. MR 978603, DOI 10.1090/memo/0419
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406, DOI 10.24033/asens.1689
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Clas Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 291–338. MR 846457, DOI 10.1007/BFb0075468
- R. Mirollo and K. Vilonen, Bernstein-Gel′fand-Gel′fand reciprocity on perverse sheaves, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 311–323. MR 925719, DOI 10.24033/asens.1536
- Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 265437, DOI 10.1090/S0002-9947-1970-0265437-8
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082
- Wolfgang Soergel, Équivalences de certaines catégories de ${\mathfrak {g}}$-modules, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 15, 725–728 (French, with English summary). MR 872544
- W. Soergel, $\mathfrak {n}$-cohomology of simple highest weight modules on walls and purity, Invent. Math. 98 (1989), no. 3, 565–580. MR 1022307, DOI 10.1007/BF01393837
- Wolfgang Soergel, Parabolisch-singuläre Dualität für Kategorie ${\mathcal {O}}$, Preprint MPI/89-68, 1989.
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
- Wolfgang Soergel, Langlands’ philosophy and Koszul duality, Preprint, 1992.
Additional Information
- Alexander Beilinson
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 33735
- Email: sasha@math.mit.edu
- Victor Ginzburg
- Affiliation: Department of Mathematics, The University of Chicago, Chicago, Illinois 60637
- Email: ginzburg@math.uchicago.edu
- Wolfgang Soergel
- Affiliation: Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-53 Bonn 3 Germany
- Address at time of publication: Mathematisches Institut, Universität Freiburg, Albertstraße 23b, D-79104 Freiburg, Germany
- Email: soergel@sun1.mathematik.uni-freiburg.de
- Received by editor(s): November 13, 1991
- Received by editor(s) in revised form: February 16, 1995
- Additional Notes: The first author was partially supported by an NSF grant
The second author thanks Harvard University and MIT, where part of this work was written
The third author thanks the MPI and DFG for financial support - © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc. 9 (1996), 473-527
- MSC (1991): Primary 17B10; Secondary 16A03
- DOI: https://doi.org/10.1090/S0894-0347-96-00192-0
- MathSciNet review: 1322847