## Fractional Power Series and Pairings on Drinfeld Modules

HTML articles powered by AMS MathViewer

- by Bjorn Poonen PDF
- J. Amer. Math. Soc.
**9**(1996), 783-812 Request permission

## Abstract:

Let $C$ be an algebraically closed field containing $\mathbb {F}_q$ which is complete with respect to an absolute value $|\;|$. We prove that under suitable constraints on the coefficients, the series $f(z) = \sum _{n \in \mathbb {Z}} a_n z^{q^n}$ converges to a surjective, open, continuous $\mathbb {F}_q$-linear homomorphism $C \rightarrow C$ whose kernel is locally compact. We characterize the locally compact sub-$\mathbb {F}_q$-vector spaces $G$ of $C$ which occur as kernels of such series, and describe the extent to which $G$ determines the series. We develop a theory of Newton polygons for these series which lets us compute the Haar measure of the set of zeros of $f$ of a given valuation, given the valuations of the coefficients. The âadjointâ series $f^\ast (z) = \sum _{n \in \mathbb {Z}} a_n^{1/q^n} z^{1/q^n}$ converges everywhere if and only if $f$ does, and in this case there is a natural bilinear pairing \[ \ker f \times \ker f^\ast \rightarrow \mathbb {F}_q \] which exhibits $\ker f^\ast$ as the Pontryagin dual of $\ker f$. Many of these results extend to non-linear fractional power series. We apply these results to construct a Drinfeld module analogue of the Weil pairing, and to describe the topological module structure of the kernel of the adjoint exponential of a Drinfeld module.## References

- Yvette Amice,
*Les nombres $p$-adiques*, Collection SUP: âLe MathĂ©maticienâ, vol. 14, Presses Universitaires de France, Paris, 1975 (French). PrĂ©face de Ch. Pisot. MR**0447195** - David L. Armacost,
*The structure of locally compact abelian groups*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 68, Marcel Dekker, Inc., New York, 1981. MR**637201** - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623â627. MR**13** - Pierre Deligne and Dale Husemoller,
*Survey of DrinfelâČd modules*, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp.Â 25â91. MR**902591**, DOI 10.1090/conm/067/902591 - Martin Eichler,
*Introduction to the theory of algebraic numbers and functions*, Pure and Applied Mathematics, Vol. 23, Academic Press, New York-London, 1966. Translated from the German by George Striker. MR**0209258** - N. Elkies: Linearized algebra and finite groups of Lie type, preprint, 1994.
- Joe Flood,
*Pontryagin duality for topological modules*, Proc. Amer. Math. Soc.**75**(1979), no.Â 2, 329â333. MR**532161**, DOI 10.1090/S0002-9939-1979-0532161-7 - Catherine Goldstein (ed.),
*SĂ©minaire de ThĂ©orie des Nombres, Paris 1988â1989*, Progress in Mathematics, vol. 91, BirkhĂ€user Boston, Inc., Boston, MA, 1990. Papers from the seminar held in Paris, 1988â1989. MR**1104695**, DOI 10.1007/978-1-4612-3460-9 - Irving Glicksberg,
*Uniform boundedness for groups*, Canadian J. Math.**14**(1962), 269â276. MR**155923**, DOI 10.4153/CJM-1962-017-3 - D. Goss: The adjoint of the Carlitz module and Fermatâs Last Theorem, preprint, 1994.
- Albert Eagle,
*Series for all the roots of the equation $(z-a)^m=k(z-b)^n$*, Amer. Math. Monthly**46**(1939), 425â428. MR**6**, DOI 10.2307/2303037 - Richard V. Kadison and John R. Ringrose,
*Fundamentals of the theory of operator algebras. Vol. I*, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR**719020** - Kneser, M.:
*Algebraische Zahlentheorie*, Vorlesungsausarbeitung Georg-August-UniversitĂ€t GĂ¶ttingen, 1966. - Neal Koblitz,
*$p$-adic numbers, $p$-adic analysis, and zeta-functions*, 2nd ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR**754003**, DOI 10.1007/978-1-4612-1112-9 - Hideyuki Matsumura,
*Commutative algebra*, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR**575344** - J. Neukirch:
*Algebraische Zahlentheorie*, Springer-Verlag, 1992. - Ă. Ore: On a Special Class of Polynomials,
*Trans. Amer. Math. Soc.***35**(1933), 559â584. - Yuichiro Taguchi,
*Semi-simplicity of the Galois representations attached to DrinfelâČd modules over fields of âinfinite characteristicsâ*, J. Number Theory**44**(1993), no.Â 3, 292â314. MR**1233291**, DOI 10.1006/jnth.1993.1055 - AndrĂ© Weil,
*Basic number theory*, 3rd ed., Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag, New York-Berlin, 1974. MR**0427267**, DOI 10.1007/978-3-642-61945-8

## Additional Information

**Bjorn Poonen**- Affiliation: Mathematical Sciences Research Institute, Berkeley, California 94720-5070
- Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
- MR Author ID: 250625
- ORCID: 0000-0002-8593-2792
- Email: poonen@msri.org, poonen@math.princeton.edu
- Received by editor(s): December 9, 1994
- Received by editor(s) in revised form: May 22, 1995
- Additional Notes: This research was supported by a Sloan Doctoral Dissertation Fellowship.
- © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**9**(1996), 783-812 - MSC (1991): Primary 13J05; Secondary 11G09
- DOI: https://doi.org/10.1090/S0894-0347-96-00203-2
- MathSciNet review: 1333295