Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Modular forms and Donaldson invariants for 4-manifolds with $b_+=1$
HTML articles powered by AMS MathViewer

by Lothar Göttsche PDF
J. Amer. Math. Soc. 9 (1996), 827-843 Request permission
References
  • S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no. 3, 257–315. MR 1066174, DOI 10.1016/0040-9383(90)90001-Z
  • Ellingsrud, G. and Göttsche, L., Variation of moduli spaces and Donaldson invariants under change of polarization, J. reine angew. Math. 467 (1995), 1–49.
  • Ellingsrud, G. and Göttsche, L., Wall-crossing formulas, Bott residue formula and the Donaldson invariants of rational surfaces, preprint 1995.
  • Ellingsrud, G., Le Potier, J. and Strømme, S. A., Some Donaldson Invariants of $\C \P ^2$, preprint 1995.
  • Robert Friedman and John W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differential Geom. 27 (1988), no. 2, 297–369. MR 925124
  • Friedman, R., Qin, Z., Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces, preprint 1994.
  • Fintushel, R., Stern, R.J., The blowup formula for Donaldson invariants, preprint 1994.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136, DOI 10.1007/978-3-663-14045-0
  • Hyun, S., Park, J.S. Holomorphic Yang-Mills Theory and Variation of the Donaldson Invariants, hep-th/9503036.
  • D. Kotschick, $\textrm {SO}(3)$-invariants for $4$-manifolds with $b^+_2=1$, Proc. London Math. Soc. (3) 63 (1991), no. 2, 426–448. MR 1114516, DOI 10.1112/plms/s3-63.2.426
  • Kotschick, D., Lisca, P., Instanton Invariants of $\C \P ^2$ via Topology, Math. Ann. 303 (1995), 345-371.
  • D. Kotschick and J. W. Morgan, $\textrm {SO}(3)$-invariants for $4$-manifolds with $b^+_2=1$. II, J. Differential Geom. 39 (1994), no. 2, 433–456. MR 1267898, DOI 10.4310/jdg/1214454879
  • P. B. Kronheimer and T. S. Mrowka, Recurrence relations and asymptotics for four-manifold invariants, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 2, 215–221. MR 1246469, DOI 10.1090/S0273-0979-1994-00492-6
  • Leness, T. Blow-up formulae for $SO(3)$-Donaldson invariants, preprint.
  • Wei-Ping Li and Zhenbo Qin, Lower-degree Donaldson polynomial invariants of rational surfaces, J. Algebraic Geom. 2 (1993), no. 3, 413–442. MR 1211994
  • Jun Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993), no. 2, 417–466. MR 1205451
  • Morgan, J., Ozsváth, P., private communication.
  • Peter S. Ozsváth, Some blowup formulas for $\textrm {SU}(2)$ Donaldson polynomials, J. Differential Geom. 40 (1994), no. 2, 411–447. MR 1293659
  • Pidstrigach, V.Y. Tyurin, A.N., in preparation.
  • Zhenbo Qin, Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom. 37 (1993), no. 2, 397–415. MR 1205450
  • Zhenbo Qin, Moduli of stable sheaves on ruled surfaces and their Picard groups, J. Reine Angew. Math. 433 (1992), 201–219. MR 1191606, DOI 10.1515/crll.1992.433.201
  • Robert A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0498390, DOI 10.1017/CBO9780511566035
  • N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), no. 1, 19–52. MR 1293681, DOI 10.1016/0550-3213(94)90124-4
  • Stern, R., Computing Donaldson Invariants, Lectures for the Park City Geometry Institute, 1994.
  • Taubes, C.H., in preparation.
  • Witten, E., Monopoles and Four-Manifolds, Math. Res. Lett. 1 (1994), 769–796.
  • Witten, E., On $S$-Duality in Abelian Gauge Theory, hep-th/9505186.
  • Kaneko, M., Zagier, D., A generalized Jacobi theta function and quasimodular forms, preprint.
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 57R55, 11F11, 14D20
  • Retrieve articles in all journals with MSC (1991): 57R55, 11F11, 14D20
Additional Information
  • Lothar Göttsche
  • Affiliation: Max–Planck–Institut für Mathematik Gottfried–Claren–Straße 26, D-53225 Bonn, Germany
  • Address at time of publication: Dipartimento di Matematica, Via Buonarroti 2, I-56127 Pisa, Italy
  • MR Author ID: 288886
  • Email: goettsch@dm.unipi.it
  • Received by editor(s): August 4, 1995
  • © Copyright 1996 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 9 (1996), 827-843
  • MSC (1991): Primary 57R55; Secondary 11F11, 14D20
  • DOI: https://doi.org/10.1090/S0894-0347-96-00212-3
  • MathSciNet review: 1362873