Cohomology of units and $L$-values at zero
HTML articles powered by AMS MathViewer
- by Jürgen Ritter and Alfred Weiss
- J. Amer. Math. Soc. 10 (1997), 513-552
- DOI: https://doi.org/10.1090/S0894-0347-97-00234-8
- PDF | Request permission
References
- Armand Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124. MR 220694, DOI 10.1112/S0025579300003703
- T. Chinburg, On the Galois structure of algebraic integers and $S$-units, Invent. Math. 74 (1983), no. 3, 321–349. MR 724009, DOI 10.1007/BF01394240
- T. Chinburg, Derivatives of $L$-functions at $s=0$, Compositio Math. 48 (1983), no. 1, 119–127. MR 700583
- Ted Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), no. 2, 351–376. MR 786352, DOI 10.2307/1971177
- Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033, DOI 10.1007/978-3-642-68816-4
- A. Fröhlich, $L$-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure), J. Reine Angew. Math. 397 (1989), 42–99. MR 993218, DOI 10.1515/crll.1989.397.42
- Cornelius Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449–499 (English, with English and French summaries). MR 1182638, DOI 10.5802/aif.1299
- Greither, C. and Holland, D., Chinburg’s third invariant in the defect class group for abelian extensions of $\Q$. Preprint December 1993
- Ralph Greenberg, On $p$-adic $L$-functions and cyclotomic fields. II, Nagoya Math. J. 67 (1977), 139–158. MR 444614, DOI 10.1017/S0027763000022583
- Ralph Greenberg, On $p$-adic Artin $L$-functions, Nagoya Math. J. 89 (1983), 77–87. MR 692344, DOI 10.1017/S0027763000020250
- Ralph Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), no. 1, 85–99. MR 504453, DOI 10.1007/BF01609481
- K. W. Gruenberg and A. Weiss, Galois invariants for units, Proc. London Math. Soc. (3) 70 (1995), no. 2, 264–284. MR 1309230, DOI 10.1112/plms/s3-70.2.264
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI 10.2307/1970784
- Kolster, M., $K$-theory and Arithmetic. Fields Institute Monographs, AMS; in preparation
- Stephen Lichtenbaum, On the values of zeta and $L$-functions. I, Ann. of Math. (2) 96 (1972), 338–360. MR 360527, DOI 10.2307/1970792
- Stephen Lichtenbaum, Values of zeta and $L$-functions at zero, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Astérisque, Nos. 24-25, Soc. Math. France, Paris, 1975, pp. 133–138. MR 0401711
- J. Martinet, Character theory and Artin $L$-functions, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 1–87. MR 0447187
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- J. Ritter and A. Weiss, On the local Galois structure of $S$-units, Algebra and number theory (Essen, 1992) de Gruyter, Berlin, 1994, pp. 229–245. MR 1285369
- —, A Tate sequence for global units. Compositio Math. 102 (1996), 147-178
- Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, Paris, 1962 (French). MR 0150130
- Solomon, D., On Lichtenbaum’s conjecture in the case of number fields. Ph.D. thesis, Brown University 1988
- H. M. Stark, Values of $L$-functions at $s=1$. I. $L$-functions for quadratic forms, Advances in Math. 7 (1971), 301–343 (1971). MR 289429, DOI 10.1016/S0001-8708(71)80009-9
- J. Tate, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709–719. MR 207680, DOI 10.1017/S0027763000026490
- John Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
- Weiss, A., Multiplicative Galois module structure. Fields Institute Monographs 5, AMS (1996)
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
- A. Wiles, On a conjecture of Brumer, Ann. of Math. (2) 131 (1990), no. 3, 555–565. MR 1053490, DOI 10.2307/1971470
Bibliographic Information
- Jürgen Ritter
- Affiliation: Institut für Mathematik der Universität, D-86135 Augsburg, Germany
- Alfred Weiss
- Affiliation: Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1
- Received by editor(s): March 28, 1996
- Additional Notes: We acknowledge financial support provided by the DFG and by NSERC. Moreover, we appreciate having been offered a pleasant stay at the Fields Institute in Waterloo, where the first part of the paper was written.
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 513-552
- MSC (1991): Primary 11R42; Secondary 11R33, 11R27
- DOI: https://doi.org/10.1090/S0894-0347-97-00234-8
- MathSciNet review: 1423032
Dedicated: Dedicated to A. Fröhlich on his $80^{\mathrm {th}}$ birthday