## Radon transforms and finite type conditions

HTML articles powered by AMS MathViewer

- by Andreas Seeger PDF
- J. Amer. Math. Soc.
**11**(1998), 869-897 Request permission

## Abstract:

We prove regularity of Radon type integral operators in $L^{p}$-Sobolev spaces.## References

- Michael Christ,
*Hilbert transforms along curves. I. Nilpotent groups*, Ann. of Math. (2)**122**(1985), no. 3, 575–596. MR**819558**, DOI 10.2307/1971330 - Michael Christ,
*Failure of an endpoint estimate for integrals along curves*, Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992) Stud. Adv. Math., CRC, Boca Raton, FL, 1995, pp. 163–168. MR**1330238** - M. Christ, A. Nagel, E. M. Stein and S. Wainger,
*Singular and maximal Radon transforms: analysis and geometry*, preprint, 1997 (to appear). - Allan Greenleaf and Andreas Seeger,
*Fourier integral operators with fold singularities*, J. Reine Angew. Math.**455**(1994), 35–56. MR**1293873**, DOI 10.1515/crll.1994.455.35 - —,
*Fourier integral operators with simple cusps*, Amer. J. Math. (to appear). - A. Greenleaf and G. Uhlmann,
*Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms*, Ann. Inst. Fourier (Grenoble)**40**(1990), no. 2, 443–466 (English, with French summary). MR**1070835**, DOI 10.5802/aif.1220 - Allan Greenleaf and Gunther Uhlmann,
*Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II*, Duke Math. J.**64**(1991), no. 3, 415–444. MR**1141280**, DOI 10.1215/S0012-7094-91-06422-7 - Victor Guillemin,
*Cosmology in $(2 + 1)$-dimensions, cyclic models, and deformations of $M_{2,1}$*, Annals of Mathematics Studies, vol. 121, Princeton University Press, Princeton, NJ, 1989. MR**999388**, DOI 10.1515/9781400882410 - Lars Hörmander,
*Hypoelliptic second order differential equations*, Acta Math.**119**(1967), 147–171. MR**222474**, DOI 10.1007/BF02392081 - Lars Hörmander,
*Fourier integral operators. I*, Acta Math.**127**(1971), no. 1-2, 79–183. MR**388463**, DOI 10.1007/BF02392052 - J. J. Kohn,
*Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two*, J. Differential Geometry**6**(1972), 523–542. MR**322365** - Richard B. Melrose and Michael E. Taylor,
*Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle*, Adv. in Math.**55**(1985), no. 3, 242–315. MR**778964**, DOI 10.1016/0001-8708(85)90093-3 - D. H. Phong,
*Singular integrals and Fourier integral operators*, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 286–320. MR**1315553** - D. H. Phong and E. M. Stein,
*Hilbert integrals, singular integrals, and Radon transforms. I*, Acta Math.**157**(1986), no. 1-2, 99–157. MR**857680**, DOI 10.1007/BF02392592 - D. H. Phong and E. M. Stein,
*Radon transforms and torsion*, Internat. Math. Res. Notices**4**(1991), 49–60. MR**1121165**, DOI 10.1155/S1073792891000077 - D. H. Phong and E. M. Stein,
*Models of degenerate Fourier integral operators and Radon transforms*, Ann. of Math. (2)**140**(1994), no. 3, 703–722. MR**1307901**, DOI 10.2307/2118622 - —,
*The Newton polyhedron and oscillatory integral operators*, Acta Math.**179**(1997), 146–177. - Linda Preiss Rothschild and E. M. Stein,
*Hypoelliptic differential operators and nilpotent groups*, Acta Math.**137**(1976), no. 3-4, 247–320. MR**436223**, DOI 10.1007/BF02392419 - Andreas Seeger,
*Degenerate Fourier integral operators in the plane*, Duke Math. J.**71**(1993), no. 3, 685–745. MR**1240601**, DOI 10.1215/S0012-7094-93-07127-X - Hart F. Smith and Christopher D. Sogge,
*$L^p$ regularity for the wave equation with strictly convex obstacles*, Duke Math. J.**73**(1994), no. 1, 97–153. MR**1257279**, DOI 10.1215/S0012-7094-94-07304-3 - C. D. Sogge and E. M. Stein,
*Averages over hypersurfaces. Smoothness of generalized Radon transforms*, J. Analyse Math.**54**(1990), 165–188. MR**1041180**, DOI 10.1007/BF02796147 - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - Shlomo Sternberg,
*Lectures on differential geometry*, 2nd ed., Chelsea Publishing Co., New York, 1983. With an appendix by Sternberg and Victor W. Guillemin. MR**891190**

## Additional Information

**Andreas Seeger**- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 226036
- Email: seeger@math.wisc.edu
- Received by editor(s): October 28, 1997
- Additional Notes: The author’s research was supported in part by an NSF grant.
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**11**(1998), 869-897 - MSC (1991): Primary 35S30; Secondary 47G10, 32F40, 44A12
- DOI: https://doi.org/10.1090/S0894-0347-98-00280-X
- MathSciNet review: 1623430