Pythagoras numbers of fields
HTML articles powered by AMS MathViewer
- by Detlev W. Hoffmann
- J. Amer. Math. Soc. 12 (1999), 839-848
- DOI: https://doi.org/10.1090/S0894-0347-99-00301-X
- Published electronically: April 13, 1999
- PDF | Request permission
Abstract:
A field $F$ of characteristic $\neq 2$ is said to have finite Pythagoras number if there exists an integer $m\geq 1$ such that each nonzero sum of squares in $F$ can be written as a sum of $\leq m$ squares, in which case the Pythagoras number $p(F)$ of $F$ is defined to be the least such integer. As a consequence of Pfister’s results on the level of fields, $p(F)$ of a nonformally real field $F$ is always of the form $2^n$ or $2^n+1$, and all integers of such type can be realized as Pythagoras numbers of nonformally real fields. Prestel showed that values of the form $2^n$, $2^n+1$, and $\infty$ can always be realized as Pythagoras numbers of formally real fields. We will show that in fact to every integer $n\geq 1$ there exists a formally real field $F$ with $p(F)=n$. As a refinement, we will show that if $n,m\geq 2$ and $k\geq 1$ are integers such that $2m\geq 2^{k}\geq n$, then there exists a uniquely ordered field $F$ with $p(F)=n$ and $u(F)=\tilde {u}(F)=2m$ (resp. $u(F)=\tilde {u}(F)=\infty$), where $u$ (resp. $\tilde {u}$) denotes the supremum of the dimensions of anisotropic forms over $F$ which are torsion in the Witt ring of $F$ (resp. which are indefinite with respect to each ordering on $F$).References
- E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Semin. Hamburg. Univ. 5 (1927) 100–115.
- J. W. S. Cassels, W. J. Ellison, and A. Pfister, On sums of squares and on elliptic curves over function fields, J. Number Theory 3 (1971), 125–149. MR 292781, DOI 10.1016/0022-314X(71)90030-8
- Richard Elman and T. Y. Lam, Pfister forms and $K$-theory of fields, J. Algebra 23 (1972), 181–213. MR 302739, DOI 10.1016/0021-8693(72)90054-3
- Richard Elman, Tsit Yuen Lam, and Alexander Prestel, On some Hasse principles over formally real fields, Math. Z. 134 (1973), 291–301. MR 330045, DOI 10.1007/BF01214693
- R. Elman, T. Y. Lam, and A. R. Wadsworth, Orderings under field extensions, J. Reine Angew. Math. 306 (1979), 7–27. MR 524644
- Richard Elman and Alexander Prestel, Reduced stability of the Witt ring of a field and its Pythagorean closure, Amer. J. Math. 106 (1984), no. 5, 1237–1260. MR 761585, DOI 10.2307/2374279
- Detlev W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric, Math. Z. 220 (1995), no. 3, 461–476. MR 1362256, DOI 10.1007/BF02572626
- Detlev W. Hoffmann, Twisted Pfister forms, Doc. Math. 1 (1996), No. 03, 67–102. MR 1386048
- Detlev W. Hoffmann, On Elman and Lam’s filtration of the $u$-invariant, J. Reine Angew. Math. 495 (1998), 175–186. MR 1603861, DOI 10.1515/crll.1998.017
- E. A. M. Hornix, Formally real fields with prescribed invariants in the theory of quadratic forms, Indag. Math. (N.S.) 2 (1991), no. 1, 65–78. MR 1104832, DOI 10.1016/0019-3577(91)90042-6
- O.T. Izhboldin, On the isotropy of quadratic forms over the function field of a quadric, Algebra i Analiz. 10 (1998), 32–57. (Russian). English transl. to appear in St. Petersburg Math. J. 10 (1999).
- Manfred Knebusch, Generic splitting of quadratic forms. II, Proc. London Math. Soc. (3) 34 (1977), no. 1, 1–31. MR 427345, DOI 10.1112/plms/s3-34.1.1
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- —, Some consequences of Merkurjev’s work on function fields, Preprint 1989.
- A. S. Merkur′ev, Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 1, 218–224 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 1, 215–221. MR 1130036
- Meinhard Peters, Summen von Quadraten in Zahlringen, J. Reine Angew. Math. 268(269) (1974), 318–323 (German). MR 352063, DOI 10.1515/crll.1974.268-269.318
- Albrecht Pfister, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652, DOI 10.1017/CBO9780511526077
- Alexander Prestel, Remarks on the Pythagoras and Hasse number of real fields, J. Reine Angew. Math. 303(304) (1978), 284–294. MR 514686, DOI 10.1515/crll.1978.303-304.284
- Rudolf Scharlau, On the Pythagoras number of orders in totally real number fields, J. Reine Angew. Math. 316 (1980), 208–210. MR 581331, DOI 10.1515/crll.1980.316.208
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
Bibliographic Information
- Detlev W. Hoffmann
- Affiliation: Equipe de Mathématiques de Besançon, UMR 6623 du CNRS, Université de Franche-Comté, 16, Route de Gray, F-25030 Besançon Cedex, France
- Email: detlev@math.univ-fcomte.fr
- Received by editor(s): July 31, 1998
- Received by editor(s) in revised form: February 12, 1999
- Published electronically: April 13, 1999
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 839-848
- MSC (1991): Primary 11E04, 11E10, 11E25, 12D15
- DOI: https://doi.org/10.1090/S0894-0347-99-00301-X
- MathSciNet review: 1670858