## The enumerative geometry of $K3$ surfaces and modular forms

HTML articles powered by AMS MathViewer

- by Jim Bryan and Naichung Conan Leung PDF
- J. Amer. Math. Soc.
**13**(2000), 371-410 Request permission

## Abstract:

Let $X$ be a $K3$ surface, and let $C$ be a holomorphic curve in $X$ representing a primitive homology class. We count the number of curves of geometric genus $g$ with $n$ nodes passing through $g$ generic points in $X$ in the linear system $\left | C\right |$ for any $g$ and $n$ satisfying $C\cdot C=2g+2n-2$. When $g=0$, this coincides with the enumerative problem studied by Yau and Zaslow who obtained a conjectural generating function for the numbers. Recently, Göttsche has generalized their conjecture to arbitrary $g$ in terms of quasi-modular forms. We prove these formulas using Gromov-Witten invariants for families, a degeneration argument, and an obstruction bundle computation. Our methods also apply to $\mathbf {P}^{2}$ blown up at 9 points where we show that the ordinary Gromov-Witten invariants of genus $g$ constrained to $g$ points are also given in terms of quasi-modular forms.## References

- W. Barth, C. Peters, and A. Van de Ven,
*Compact complex surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR**749574**, DOI 10.1007/978-3-642-96754-2 - Victor Batyrev. On the Betti numbers of birationally isomorphic projective varieties with trivial canonical bundles. Preprint, alg-geom//9710020.
- A. Beauville. Counting rational curves on $K3$ surfaces. Preprint alg-geom/9701019, 1997.
- K. Behrend. Personal communication, 1998.
- K. Behrend,
*Gromov-Witten invariants in algebraic geometry*, Invent. Math.**127**(1997), no. 3, 601–617. MR**1431140**, DOI 10.1007/s002220050132 - K. Behrend and B. Fantechi,
*The intrinsic normal cone*, Invent. Math.**128**(1997), no. 1, 45–88. MR**1437495**, DOI 10.1007/s002220050136 - K. Behrend and Yu. Manin,
*Stacks of stable maps and Gromov-Witten invariants*, Duke Math. J.**85**(1996), no. 1, 1–60. MR**1412436**, DOI 10.1215/S0012-7094-96-08501-4 - M. Bershadsky, C. Vafa, and V. Sadov,
*D-branes and topological field theories*, Nuclear Phys. B**463**(1996), no. 2-3, 420–434. MR**1393648**, DOI 10.1016/0550-3213(96)00026-0 - Arthur L. Besse,
*Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR**867684**, DOI 10.1007/978-3-540-74311-8 - Xi Chen.
*Counting curves on $K3$*. Ph.D. thesis, Harvard, 1997. - Xi Chen.
*Singularities of rational curves on $K3$ surfaces*. Preprint, math.AG/9812050, 1998. - Xi Chen. Personal communication, 1999.
- David A. Cox and Sheldon Katz.
*Mirror Symmetry and Algebraic Geometry*. American Mathematical Society, Providence, RI, 1999. - S. K. Donaldson,
*Yang-Mills invariants of four-manifolds*, Geometry of low-dimensional manifolds, 1 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press, Cambridge, 1990, pp. 5–40. MR**1171888** - B. Fantechi, L. Göttsche, and D. van Straten,
*Euler number of the compactified Jacobian and multiplicity of rational curves*, J. Algebraic Geom.**8**(1999), no. 1, 115–133. MR**1658220** - Robert Friedman and John W. Morgan,
*Smooth four-manifolds and complex surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR**1288304**, DOI 10.1007/978-3-662-03028-8 - Alexander Givental. Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. (alg-geom/9612001).
- Lothar Göttsche. A conjectural generating function for numbers of curves on surfaces.
*Comm. Math. Phys.*, 196(3):523–533, 1998. - Lothar Göttsche,
*The Betti numbers of the Hilbert scheme of points on a smooth projective surface*, Math. Ann.**286**(1990), no. 1-3, 193–207. MR**1032930**, DOI 10.1007/BF01453572 - L. Göttsche and R. Pandharipande,
*The quantum cohomology of blow-ups of $\textbf {P}^2$ and enumerative geometry*, J. Differential Geom.**48**(1998), no. 1, 61–90. MR**1622601** - T. Graber and R. Pandharipande. Localization of virtual classes.
*Invent. Math.*, 135(2):487–518, 1999. - Robin Hartshorne,
*Residues and duality*, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR**0222093** - Daniel Huybrechts. Compact hyper-Kähler manifolds: basic results.
*Invent. Math.*, 135(1):63–113, 1999. - Andrew Kresch. Cycle groups for Artin stacks. math.AG/9810166.
- P. B. Kronheimer. Some non-trivial families of symplectic structures. Preprint, 1997.
- Jun Li and Gang Tian. Comparison of the algebraic and the symplectic Gromov-Witten invariants. (alg-geom/9712035).
- Jun Li and Gang Tian,
*Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties*, J. Amer. Math. Soc.**11**(1998), no. 1, 119–174. MR**1467172**, DOI 10.1090/S0894-0347-98-00250-1 - Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. In
*Topics in symplectic $4$-manifolds (Irvine, CA, 1996)*, pages 47–83. Internat. Press, Cambridge, MA, 1998. - T.J. Li and A. Liu. Family Seiberg-Witten invariant. Preprint., 1997.
- Bong H. Lian, Kefeng Liu, and Shing-Tung Yau,
*Mirror principle. I*, Asian J. Math.**1**(1997), no. 4, 729–763. MR**1621573**, DOI 10.4310/AJM.1997.v1.n4.a5 - Yongbin Ruan and Gang Tian,
*A mathematical theory of quantum cohomology*, J. Differential Geom.**42**(1995), no. 2, 259–367. MR**1366548** - Yongbin Ruan. Virtual neighborhoods and pseudo-holomorphic curves. Preprint alg-geom/9611021., 1996.
- Bernd Siebert. Gromov-Witten invariants of general symplectic manifolds. Preprint math.DG/9608105., 1996.
- Bernd Siebert. Algebraic and symplectic Gromov-Witten invariants coincide. Preprint math.AG/9804108., 1998.
- Charles A. Weibel,
*An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR**1269324**, DOI 10.1017/CBO9781139644136 - Shing Tung Yau,
*On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I*, Comm. Pure Appl. Math.**31**(1978), no. 3, 339–411. MR**480350**, DOI 10.1002/cpa.3160310304 - Shing-Tung Yau and Eric Zaslow,
*BPS states, string duality, and nodal curves on $K3$*, Nuclear Phys. B**471**(1996), no. 3, 503–512. MR**1398633**, DOI 10.1016/0550-3213(96)00176-9

## Additional Information

**Jim Bryan**- Affiliation: Department of Mathematics, Tulane University, 6823 St. Charles Ave., New Orleans, Louisiana 70118
- ORCID: 0000-0003-2541-5678
- Email: jbryan@math.tulane.edu
**Naichung Conan Leung**- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 610317
- Email: leung@math.umn.edu
- Received by editor(s): January 5, 1998
- Received by editor(s) in revised form: October 18, 1999
- Published electronically: January 31, 2000
- Additional Notes: The first author is supported by a Sloan Foundation Fellowship and NSF grant DMS-9802612 and the second author is supported by NSF grant DMS-9626689.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**13**(2000), 371-410 - MSC (2000): Primary 14N35, 53D45, 14J28
- DOI: https://doi.org/10.1090/S0894-0347-00-00326-X
- MathSciNet review: 1750955