Linear algebraic groups and countable Borel equivalence relations
HTML articles powered by AMS MathViewer
- by Scot Adams and Alexander S. Kechris;
- J. Amer. Math. Soc. 13 (2000), 909-943
- DOI: https://doi.org/10.1090/S0894-0347-00-00341-6
- Published electronically: June 23, 2000
- PDF | Request permission
Abstract:
If $R_i$ is an equivalence relation on a standard Borel space $B_i\ (i=1,2)$, then we say that $R_1$ is Borel reducible to $R_2$ if there is a Borel function $f: B_1\to B_2$ such that $(x,y)\in R_1 \Leftrightarrow (f(x),f(y))\in R_2$. An equivalence relation $R$ on a standard Borel space $B$ is Borel if its graph is a Borel subset of $B\times B$. It is countable if each of its equivalence classes is countable. We investigate the complexity of Borel reducibility of countable Borel equivalence relations on standard Borel spaces. We show that it is at least as complex as the relation of inclusion on the collection of Borel subsets of the real line. We also show that Borel reducibility is ${\boldsymbol \Sigma }^{\boldsymbol 1}_{\boldsymbol 2}$-complete. The proofs make use of the ergodic theory of linear algebraic groups, and more particularly the superrigidity theory of R. Zimmer.References
- Scot Adams, Indecomposability of treed equivalence relations, Israel J. Math. 64 (1988), no. 3, 362–380 (1989). MR 995576, DOI 10.1007/BF02882427
- Scott Adams, Trees and amenable equivalence relations, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 1–14. MR 1053796, DOI 10.1017/S0143385700005368
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- Jean Dieudonné, Sur les groupes classiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, VI, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1040. MR 344355
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI 10.1090/S0002-9947-1994-1149121-0
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- H. Silverman and M. Ziegler, Functions of positive real part with negative coefficients, Houston J. Math. 4 (1978), no. 2, 269–275. MR 480974
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894–914. MR 1011177, DOI 10.2307/2274750
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 255673 11S. Gao, Some applications of the Adams-Kechris technique, preprint, 2000.
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Springer-Verlag, Berlin, 1997. Translated from the Russian by A. Kozlowski; Reprint of the 1993 translation [Lie groups and Lie algebras. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993; MR1306737 (95f:22001)]. MR 1631937
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5 15G. Hjorth, Around nonclassifiability for countable torsion-free abelian groups, preprint, 1998.
- Greg Hjorth and Alexander S. Kechris, Borel equivalence relations and classifications of countable models, Ann. Pure Appl. Logic 82 (1996), no. 3, 221–272. MR 1423420, DOI 10.1016/S0168-0072(96)00006-1
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 396773, DOI 10.1007/978-1-4684-9443-3 18S. Jackson, A.S. Kechris, and A. Louveau, Countable Borel equivalence relations, preprint, 2000.
- Alexander S. Kechris, The structure of Borel equivalence relations in Polish spaces, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 89–102. MR 1233813, DOI 10.1007/978-1-4613-9754-0_{7}
- Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283–295. MR 1176624, DOI 10.1017/S0143385700006751
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4 22A.S. Kechris, Actions of Polish groups and classification problems, preprint, 1998. 23A.S. Kechris, New directions in descriptive set theory, Bull. Symb. Logic, 5 (2), 161-174, 1999. 24A.S. Kechris, Descriptive dynamics, Descriptive Set Theory and Dynamical Systems, Ed. by M. Foreman, A.S. Kechris, A. Louveau, and B. Weiss, London Math. Society Lecture Note Series, 277, 231-258, Cambridge Univ. Press, 2000.
- Alain Louveau and Boban Velic̆ković, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994), no. 1, 255–259. MR 1169042, DOI 10.1090/S0002-9939-1994-1169042-2
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Calvin C. Moore, Ergodic theory and von Neumann algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 179–226. MR 679505
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Joseph J. Rotman, An introduction to the theory of groups, 4th ed., Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995. MR 1307623, DOI 10.1007/978-1-4612-4176-8
- Klaus Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1074576, DOI 10.1090/cbms/076
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 344216, DOI 10.1007/978-1-4684-9884-4
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9 33 S. Thomas, Notes on TFA$_2$ groups, preprint, 1998.
- V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220. MR 159923, DOI 10.1090/S0002-9947-1963-0159923-5
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Groups generating transversals to semisimple Lie group actions, Israel J. Math. 73 (1991), no. 2, 151–159. MR 1135209, DOI 10.1007/BF02772946
Bibliographic Information
- Scot Adams
- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: adams@math.umn.edu
- Alexander S. Kechris
- Affiliation: Department of Mathematics, Caltech, Pasadena, California 91125
- MR Author ID: 99660
- Email: kechris@caltech.edu
- Received by editor(s): March 27, 1999
- Received by editor(s) in revised form: April 21, 2000
- Published electronically: June 23, 2000
- Additional Notes: The first author’s research was partially supported by NSF Grant DMS 9703480.
The second author’s research was partially supported by NSF Grant DMS 9619880 and a Visiting Miller Research Professorship at U.C. Berkeley. - © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 909-943
- MSC (2000): Primary 03E15; Secondary 37A20
- DOI: https://doi.org/10.1090/S0894-0347-00-00341-6
- MathSciNet review: 1775739