Values of zeta functions at negative integers, Dedekind sums and toric geometry
HTML articles powered by AMS MathViewer
- by Stavros Garoufalidis and James E. Pommersheim;
- J. Amer. Math. Soc. 14 (2001), 1-23
- DOI: https://doi.org/10.1090/S0894-0347-00-00352-0
- Published electronically: September 18, 2000
- PDF | Request permission
Abstract:
We study relations among special values of zeta functions, invariants of toric varieties, and generalized Dedekind sums. In particular, we use invariants arising in the Todd class of a toric variety to give a new explicit formula for the values of the zeta function of a real quadratic field at nonpositive integers. We also express these invariants in terms of the generalized Dedekind sums studied previously by several authors. The paper includes conceptual proofs of these relations and explicit computations of the various zeta values and Dedekind sums involved.References
- Tom M. Apostol and Thiennu H. Vu, Identities for sums of Dedekind type, J. Number Theory 14 (1982), no. 3, 391–396. MR 660384, DOI 10.1016/0022-314X(82)90074-9
- Alexander I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994), no. 4, 769–779. MR 1304623, DOI 10.1287/moor.19.4.769 [BP]BP A. I. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New Perspectives in Mathematics, MSRI, 1999.
- Michel Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 653–663 (French). MR 982338, DOI 10.24033/asens.1572
- Michel Brion and Michèle Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67–92. MR 1427657, DOI 10.1515/crll.1997.482.67
- Michel Brion and Michèle Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997), no. 2, 371–392. MR 1415319, DOI 10.1090/S0894-0347-97-00229-4
- Sylvain E. Cappell and Julius L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 62–69. MR 1217352, DOI 10.1090/S0273-0979-1994-00436-7
- Pierrette Cassou-Noguès, $p$-adic $L$-functions for totally real number field, Proceedings of the Conference on $p$-adic Analysis (Nijmegen, 1978) Katholieke Univ., Nijmegen, 1978, pp. 24–37. MR 522119
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme. I, J. Number Theory 14 (1982), no. 1, 32–64 (French, with English summary). MR 644899, DOI 10.1016/0022-314X(82)90056-7
- Alfred Rosenblatt, Sur les points singuliers des équations différentielles, C. R. Acad. Sci. Paris 209 (1939), 10–11 (French). MR 85
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Victor Guillemin, Riemann-Roch for toric orbifolds, J. Differential Geom. 45 (1997), no. 1, 53–73. MR 1443331
- Ulrich Halbritter, Some new reciprocity formulas for generalized Dedekind sums, Results Math. 8 (1985), no. 1, 21–46. MR 812244, DOI 10.1007/BF03322656
- David R. Hayes, Brumer elements over a real quadratic base field, Exposition. Math. 8 (1990), no. 2, 137–184. MR 1052260 [KK]KK J.M. Kantor, A.G. Khovanskii, Integral points in convex polyhedra, combinatorial Riemann-Roch and generalized MacLaurin formulae, IHES (1992) 932–937.
- A. V. Pukhlikov and A. G. Khovanskiĭ, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra i Analiz 4 (1992), no. 4, 188–216 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 4, 789–812. MR 1190788 [Kl]Kl H. Klingen, Über die Werke der Dedekindsche Zeta Funktion, Math. Ann. 145 (1962) 265–272. [Li]Li S. Lichtenbaum, Talk at I.A.S., mimeographed notes 1971.
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Robert Morelli, Pick’s theorem and the Todd class of a toric variety, Adv. Math. 100 (1993), no. 2, 183–231. MR 1234309, DOI 10.1006/aima.1993.1033
- James E. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), no. 1, 1–24. MR 1198839, DOI 10.1007/BF01444874
- James E. Pommersheim, Products of cycles and the Todd class of a toric variety, J. Amer. Math. Soc. 9 (1996), no. 3, 813–826. MR 1358042, DOI 10.1090/S0894-0347-96-00209-3
- James E. Pommersheim, Barvinok’s algorithm and the Todd class of a toric variety, J. Pure Appl. Algebra 117/118 (1997), 519–533. Algorithms for algebra (Eindhoven, 1996). MR 1457853, DOI 10.1016/S0022-4049(97)00025-X
- Hans Rademacher and Emil Grosswald, Dedekind sums, The Carus Mathematical Monographs, No. 16, Mathematical Association of America, Washington, DC, 1972. MR 357299, DOI 10.5948/UPO9781614440161
- Robert Sczech, Eisenstein cocycles for $\textrm {GL}_2\textbf {Q}$ and values of $L$-functions in real quadratic fields, Comment. Math. Helv. 67 (1992), no. 3, 363–382. MR 1171300, DOI 10.1007/BF02566508
- Robert Sczech, Eisenstein group cocycles for $\textrm {GL}_n$ and values of $L$-functions, Invent. Math. 113 (1993), no. 3, 581–616. MR 1231838, DOI 10.1007/BF01244319
- Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417. MR 427231
- Takuro Shintani, On special values of zeta functions of totally real algebraic number fields, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 591–597. MR 562660
- Carl Ludwig Siegel, Bernoullische Polynome und quadratische Zahlkörper, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1968 (1968), 7–38 (German). MR 233802
- Carl Ludwig Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15–56 (German). MR 285488
- David Solomon, Algebraic properties of Shintani’s generating functions: Dedekind sums and cocycles on $\textrm {PGL}_2(\textbf {Q})$, Compositio Math. 112 (1998), no. 3, 333–362. MR 1631700, DOI 10.1023/A:1000493903703
- Glenn Stevens, The Eisenstein measure and real quadratic fields, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 887–927. MR 1024612
- Don Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149–172. MR 357333, DOI 10.1007/BF01351173
- Don Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153–184. MR 366877, DOI 10.1007/BF01343950
- Don Zagier, Nombres de classes et fractions continues, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Astérisque, No. 24-25, Soc. Math. France, Paris, 1975, pp. 81–97 (French). MR 374093
- D. Zagier, Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976) Astérisque, No. 41–42, Soc. Math. France, Paris, 1977, pp. 135–151 (French). MR 441925
Bibliographic Information
- Stavros Garoufalidis
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
- Email: stavros@math.gatech.edu
- James E. Pommersheim
- Affiliation: Department of Mathematics, Pomona College, 610 North College Ave., Claremont, California 91711
- Email: jpommersheim@pomona.edu
- Received by editor(s): June 1, 1999
- Received by editor(s) in revised form: May 24, 2000
- Published electronically: September 18, 2000
- Additional Notes: The authors were partially supported by NSF grants DMS-95-05105 and DMS-95-08972, respectively.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 1-23
- MSC (1991): Primary 11M06; Secondary 14M25, 11F20
- DOI: https://doi.org/10.1090/S0894-0347-00-00352-0
- MathSciNet review: 1800347
Dedicated: Dedicated to our teacher, W. Fulton