Definable sets, motives and $p$-adic integrals
HTML articles powered by AMS MathViewer
- by Jan Denef and François Loeser;
- J. Amer. Math. Soc. 14 (2001), 429-469
- DOI: https://doi.org/10.1090/S0894-0347-00-00360-X
- Published electronically: December 8, 2000
- PDF | Request permission
Abstract:
We associate a canonical virtual motive to definable sets over a field of characteristic zero. We use this construction to show that very general $p$-adic integrals are canonically interpolated by motivic ones.References
- James Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239–271. MR 229613, DOI 10.2307/1970573
- Sebastian del Baño Rollin and Vicente Navarro Aznar, On the motive of a quotient variety, Collect. Math. 49 (1998), no. 2-3, 203–226. Dedicated to the memory of Fernando Serrano. MR 1677089
- Dirk Bollaerts, On the Poincaré series associated to the $p$-adic points on a curve, Acta Arith. 51 (1988), no. 1, 9–30. MR 959783, DOI 10.4064/aa-51-1-9-30
- Zoé Chatzidakis, Lou van den Dries, and Angus Macintyre, Definable sets over finite fields, J. Reine Angew. Math. 427 (1992), 107–135. MR 1162433 CH R. Cluckers, D. Haskell, The Grothendieck ring of the $p$-adic numbers, preprint (5 pages).
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, DOI 10.1007/BF01389133
- Jan Denef, $p$-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154–166. MR 850632, DOI 10.1515/crll.1986.369.154
- J. Denef, On the evaluation of certain $p$-adic integrals, Séminaire de théorie des nombres, Paris 1983–84, Progr. Math., vol. 59, Birkhäuser Boston, Boston, MA, 1985, pp. 25–47. MR 902824
- J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), no. 6, 991–1008. MR 919001, DOI 10.2307/2374583
- Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537. MR 1618144
- Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, DOI 10.1007/s002220050284
- Jan Denef and François Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J. 99 (1999), no. 2, 285–309. MR 1708026, DOI 10.1215/S0012-7094-99-09910-6 MK J. Denef, F. Loeser, Motivic integration, quotient singularities and the McKay correspondence, preprint February 1999.
- Herbert B. Enderton, A mathematical introduction to logic, Academic Press, New York-London, 1972. MR 337470
- Michael Fried, Dan Haran, and Moshe Jarden, Galois stratification over Frobenius fields, Adv. in Math. 51 (1984), no. 1, 1–35. MR 728998, DOI 10.1016/0001-8708(84)90002-1
- Michael D. Fried, Dan Haran, and Moshe Jarden, Effective counting of the points of definable sets over finite fields, Israel J. Math. 85 (1994), no. 1-3, 103–133. MR 1264342, DOI 10.1007/BF02758639
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- M. Fried and G. Sacerdote, Solving Diophantine problems over all residue class fields of a number field and all finite fields, Ann. of Math. (2) 104 (1976), no. 2, 203–233. MR 491477, DOI 10.2307/1971045
- H. Gillet and C. Soulé, Descent, motives and $K$-theory, J. Reine Angew. Math. 478 (1996), 127–176. MR 1409056, DOI 10.1515/crll.1996.478.127 GN F. Guillén, V. Navarro Aznar, Un critère d’extension d’un foncteur défini sur les schémas lisses, preprint (1995), revised (1996).
- Catarina Kiefe, Sets definable over finite fields: their zeta-functions, Trans. Amer. Math. Soc. 223 (1976), 45–59. MR 422281, DOI 10.1090/S0002-9947-1976-0422281-1
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Angus Macintyre, Rationality of $p$-adic Poincaré series: uniformity in $p$, Ann. Pure Appl. Logic 49 (1990), no. 1, 31–74. MR 1076249, DOI 10.1016/0168-0072(90)90050-C
- Joseph Oesterlé, Réduction modulo $p^{n}$ des sous-ensembles analytiques fermés de $\textbf {Z}^{N}_{p}$, Invent. Math. 66 (1982), no. 2, 325–341 (French). MR 656627, DOI 10.1007/BF01389398
- Johan Pas, Uniform $p$-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399 (1989), 137–172. MR 1004136, DOI 10.1515/crll.1989.399.137 Pr M. Presburger, Uber die Vollständigkeit eines gewissen Systems des Arithmetik …, Comptes-rendus du I Congrès des Mathématiciens des Pays Slaves, Warsaw (1929), 92–101.
- A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163–187. MR 1265529, DOI 10.1090/pspum/055.1/1265529
- Jean-Pierre Serre, Zeta and $L$ functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 82–92. MR 194396
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Willem Veys, Reduction modulo $p^n$ of $p$-adic subanalytic sets, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 483–486. MR 1177996, DOI 10.1017/S0305004100071152
Similar Articles
- Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 03C10, 03C98, 12E30, 12L12, 14G15, 14G20, 14G27, 11G25, 11S40, 12L10, 14F20, 14G05, 14G10, 14J20
- Retrieve articles in all journals with MSC (2000): 03C10, 03C98, 12E30, 12L12, 14G15, 14G20, 14G27, 11G25, 11S40, 12L10, 14F20, 14G05, 14G10, 14J20
Bibliographic Information
- Jan Denef
- Affiliation: Department of Mathematics, University of Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- Email: Jan.Denef@wis.kuleuven.ac.be
- François Loeser
- Affiliation: Département de mathématiques et applications, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France (UMR 8553 du CNRS)
- MR Author ID: 115300
- ORCID: 0000-0002-7065-5497
- Email: Francois.Loeser@ens.fr
- Received by editor(s): October 6, 1999
- Received by editor(s) in revised form: October 20, 2000
- Published electronically: December 8, 2000
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 429-469
- MSC (2000): Primary 03C10, 03C98, 12E30, 12L12, 14G15, 14G20, 14G27; Secondary 11G25, 11S40, 12L10, 14F20, 14G05, 14G10, 14J20
- DOI: https://doi.org/10.1090/S0894-0347-00-00360-X
- MathSciNet review: 1815218